小学数学奥数基础教程(四年级)30讲(6)
发布时间:2021-06-07
发布时间:2021-06-07
小学四年级奥数基础教程全30讲
例6 盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里 第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。这时盒子里共有多少只乒乓球? 分析与解:一只球变成3只球,实际上多了2只球。第一次多了2只球,第二次多了2×2只球 第十次多了2×10只球。因此拿了十次后,多了 2×1+2×2+ +2×10 =2×(1+2+ +10) =2×55=110(只)。 加上原有的3只球,盒子里共有球110+3=113(只)。
综合列式为:
(3-1)×(1+2+ +10)+3
=2×[(1+10)×10÷2]+3=113(只)。 练习3
1.计算下列各题:
(1)2+4+6+ +200; (2)17+19+21+ +39; (3)5+8+11+14+ +50; (4)3+10+17+24+ +101。
2.求首项是5,末项是93,公差是4的等差数列的和。
3.求首项是13,公差是5的等差数列的前30项的和。
4.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。问:时钟一昼夜敲打多少次?
5.求100以内除以3余2的所有数的和。
6.在所有的两位数中,十位数比个位数大的数共有多少个?
第四讲 4,8,9整除的数的特征
我们在三年级已经学习了能被2,3,5整除的数的特征,这一讲我们将讨论整除的性质,并讲解能被4,8,9整除的数的特征。 数的整除具有如下性质:
性质1 如果甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能被丙数整除。例如,48能被16整除,16能被8整除,那么48一定能被8整除。 性质2 如果两个数都能被一个自然数整除,那么这两个数的和与差也一定能被这个自然数整除。例如,21与15都能被3整除,那么21+15及21-15都能被3整除。
性质3 如果一个数能分别被两个互质的自然数整除,那么这个数一定能被这两个互质的自然数的乘积整除。例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除。 利用上面关于整除的性质,我们可以解决许多与整除有关的问题。为了进一步学习数的整除性,我们把学过的和将要学习的一些整除的数字特征列出来:
(1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。
(2)一个数的个位数字如果是0或5,那么这个数就能被5整除。
(3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。
(4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。
(5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。 (6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。
其中(1)(2)(3)是三年级学过的内容,(4)(5)(6)是本讲要学习的内容。
因为100能被4(或25)整除,所以由整除的性质1知,整百的数都能被4(或25)整除。因为任何自然数都能分成一个整百的数与这个数的后两位数之和,所以由整除的性质2知,只要这个数的后两位数能被4(或25)整除,这个数就能被4(或25)整除。这就证明了(4)。 类似地可以证明(5)。
(6)的正确性,我们用一个具体的数来说明一般性的证明方法。 837=800+30+7 =8×100+3×10+7
=8×(99+1)+3×(9+1)+7 =8×99+8+3×9+3+7
=(8×99+3×9)+(8+3+7)。
因为99和9都能被9整除,所以根据整除的性质1和性质2知,(8x99+3x9)能被9整除。再根据整除的性质2,由(8+3+7)能被9整除,就能判断837能被9整除。
利用(4)(5)(6)还可以求出一个数除以4,8,9的余数:
(4‘)一个数除以4的余数,与它的末两位除以4的余数相同。
(5')一个数除以8的余数,与它的末三位除以8的余数相同。
(6')一个数除以9的余数,与它的各位数字之和除以9的余数相同。
上一篇:《出版物上数字用法》解读