小学数学奥数基础教程(四年级)30讲(7)

发布时间:2021-06-07

小学四年级奥数基础教程全30讲

例1 在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除?

234,789,7756,8865,3728.8064。

解:能被4整除的数有7756,3728,8064; 能被8整除的数有3728,8064; 能被9整除的数有234,8865,8064。 例2 在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除? 解:如果56□2能被9整除,那么 5+6+□+2=13+□ 应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;

如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;

如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。 到现在为止,我们已经学过能被2,3,5,4,8,9整除的数的特征。根据整除的性质3,我们可以把判断整除的范围进一步扩大。例如,判断一个数能否被6整除,因为6=2×3,2与3互质,所以如果这个数既能被2整除又能被3整除,那么根据整除的性质3,可判定这个数能被6整除。同理,判断一个数能否被12整除,只需判断这个数能否同时被3和4整除;判断一个数能否被72整除,只需判断这个数能否同时被8和9整除;如此等等。 例3 从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小到大进行排列。

解:因为组成的三位数能同时被2,5整除,所以个位数字为0。根据三位数能被3整除的特征,数字和2+7+0与5+7+0都能被3整除,因此所求的这些数为270,570,720,750。 例4 五位数能被72整除,问:A与B各代

表什么数字? 分析与解:已知

能被72整除。因为72=8

×9,8和9是互质数,所以

既能被8整除,

又能被9整除。根据能被8

整除的数的特征,要求

能被8整除,由此可确定B=6。再根据能被9整除的数的特征,

的各位数字之和为

A+3+2+9+B=A+3-f-2+9+6=A+20,

因为l≤A≤9,所以21≤A+20≤29。在这个范围内只有27能被9整除,所以A=7。

解答例4的关键是把72分解成8×9,再分别根据能被8和9整除的数的特征去讨论B和A所代表的数字。在解题顺序上,应先确定B所代表的数字,因为B代表的数字不受A的取值大小的影响,一旦B代表的数字确定下来,A所代表的数字就容易确定了。 例5 六位数

是6的倍数,这样的六位数

有多少个?

分析与解:因为6=2×3,且2与3互质,所以这个整数既能被2整除又能被3整除。由六位数能被2整除,推知A可取0,2,4,6,8这五个值。再由六位数能被3整除,推知 3+A+B+A+B+A=3+3A+2B

能被3整除,故2B能被3整除。B可取0,3,6,9这4个值。由于B可以取4个值,A可以取5个值,题目没有要求A≠B,所以符合条件的六位数共有5×4=20(个)。 例6 要使六位数

能被36整除,而且所得

的商最小,问A,B,C各代表什么数字?

分析与解:因为36=4×9,且4与9互质,所以这个六位数应既能被4整除又能被9整除。六位数

能被4整除,就要

能被4整除,因

此C可取1,3,5,7,9。 要使所得的商最小,就要使

这个六位

数尽可能小。因此首先是A尽量小,其次是B尽量小,最后是C尽量小。先试取A=0。六位数

的各位数字之和为12+B+C。它应能被9整除,因此B+C=6或B+C=15。因为B,C应尽量小,所以B+C=6,而C只能取1,3,5,7,9,所以要使

尽可能小,应取B=1,C=5。

当A=0,B=1,C=5时,六位数能被36整除,

而且所得商最小,为150156÷36=4171。 练习4

1.6539724能被4,8,9,24,36,72中的哪几个数整除?

2.个位数是5,且能被9整除的三位数共有多少个?

3.一些四位数,百位上的数字都是3,十位上的数字都是6,并且它们既能被2整除又能被3整

小学数学奥数基础教程(四年级)30讲(7).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219