小学数学奥数基础教程(四年级)30讲(13)

发布时间:2021-06-07

小学四年级奥数基础教程全30讲

最后再说明一点,an

÷b所得余数,随着n的增大,必然会出现周期性变化规律,因为所得余数必然小于b,所以在b个数以内必会重复出现。 练习8

1.求下列各数的个位数字:

(1)3838; (2)2930

; (3)6431; (4)17215。

2.求下列各式运算结果的个位数字: (1)9222+5731; (2)615+487+349;

(3)469-6211; (4)37×48+59×610

。 3.求下列各除法算式所得的余数: (1)5100÷4; (2)8111÷6; (3)488÷7

第9讲 数字谜(一)

我们在三年级已经学习过一些简单的数字谜问题。这两讲除了复习巩固学过的知识外,还要学习一些新的内容。

例1 在下面算式等号左边合适的地方添上括号,使等式成立:

5+7×8+12÷4-2=20。

分析:等式右边是20,而等式左边算式中的7×8所得的积比20大得多。因此必须设法使这个积缩小一定的倍数,化大为小。

从整个算式来看,7×8是4的倍数,12也是4的倍数,5不能被4整除,因此可在7×8+12前后添上小括号,再除以4得17,5+17-2=20。 解:5+(7×8+12)÷4-2=20。

例2 把1~9这九个数字填到下面的九个□里,组成三个等式(每个数字只能填一次):

分析与解:如果从加法与减法两个算式入手,那么会出现许多种情形。如果从乘法算式入手,那么只有下面两种可能:

2×3=6或2×4=8,

所以应当从乘法算式入手。

因为在加法算式□+□=□中,等号两边的数相等,所以加法算式中的三个□内的三个数的和是偶数;而减法算式□-□=可以变形为加法算式□=□+□,所以减法算式中的三个□内的三个数的和也是偶数。于是可知,原题加减法算式中的六个数的和应该是偶数。

若乘法算式是2×4=8,则剩下的六个数1,3,5,6,7,9的和是奇数,不合题意; 若乘法算式是2×3=6,则剩下的六个数1,4,5,7,8,9可分为两组:

4+5=9,8-7=1(或8-1=7); 1+7=8,9-5=4(或9-4=5)。 所以答案为 与

例3 下面的算式是由1~9九个数字组成的,其中“7”已填好,请将其余各数填入□,使得等式成立:

□□□÷□□=□-□=□-7。

分析与解:因为左端除法式子的商必大于等于2,所以右端被减数只能填9,由此知左端被除数的百位数只能填1,故中间减式有8-6,6-4,5-3和4-2四种可能。经逐一验证,8-6,6-4和4-2均无解,只有当中间减式为5-3时有如下两组解: 128÷64=5-3=9-7,

或 164÷82=5-3=9-7。

例4 将1~9九个数字分别填入下面四个算式的九个□中,使得四个等式都成立: □+□=6, □×□=8, □-□=6, □□÷□=8。

分析与解:因为每个□中要填不同的数字,对于加式只有两种填法:1+5或2+4;对于乘式也只有两种填法:1×8或2×4。加式与乘式的数字不能相同,搭配后只有两种可能: (1)加式为1+5,乘式为2×4; (2)加式为2+4,乘式为1×8。

对于(1),还剩3,6,7,8,9五个数字未填,减式只能是9-3,此时除式无法满足;

对于(2),还剩3,5,6,7,9五个数字未填,减式只能是9-3,此时除式可填56÷7。答案如下:

2+4=6, 1×8=8, 9-3=6, 56÷7=8。

例2~例4都是对题目经过初步分析后,将满足题目条件的所有可能情况全部列举出来,再逐一试算,决定取舍。这种方法叫做枚举法,也叫穷举法或列举法,它适用于只有几种可能情况的题目,如果可能的情况很多,那么就不宜用枚举法。

小学数学奥数基础教程(四年级)30讲(13).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219