高中数学教案(5)

时间:2025-07-10

小结:

(1) 交换原命题的条件和结论,所得的命题就是它的逆命题:

(2) 同时否定原命题的条件和结论,所得的命题就是它的否命题;

(3) 交换原命题的条件和结论,并且同时否定,所得的命题就是它的逆否命题. 强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的。 5.四种命题的形式

让学生结合所举例子,思考:

若原命题为“若P,则q”的形式,则它的逆命题、否命题、逆否命题应分别写成什么形式? 学生通过思考、分析、比较,总结如下: 原命题:若P,则q.则: 逆命题:若q,则P. 否命题:若¬P,则¬q.(说明符号“¬”的含义:符号“¬”叫做否定符号.“¬p”表示p的否定;

即不是p;非p)

逆否命题:若¬q,则¬P. 6.巩固练习

写出下列命题的逆命题、否命题、逆否命题并判断它们的真假: (1) 若一个三角形的两条边相等,则这个三角形的两个角相等; (2) 若一个整数的末位数字是0,则这个整数能被5整除;

2

(3) 若x=1,则x=1;

(4) 若整数a是素数,则是a奇数。 7.思考、分析

结合以上练习思考:原命题的真假与其它三种命题的真假有什么关系? 通过此问,学生将发现:

①原命题为真,它的逆命题不一定为真。 ②原命题为真,它的否命题不一定为真。 ③原命题为真,它的逆否命题一定为真。 原命题为假时类似。

,逆命题与否命题也总是具有相同的真假性.

由此会引起我们的思考:

一个命题的逆命题、否命题与逆否命题之间是否还存在着一定的关系呢?

让学生结合所做练习分析原命题与它的逆命题、否命题与逆否命题四种命题间的关系. 学生通过分析,将发现四种命题间的关系如下图所示:

8.总结归纳

高中数学教案(5).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219