《结构主义》作者:皮亚杰(JEANPIAGET) 倪连生、(10)

发布时间:2021-06-06

人们常说,要规定结构主义的特征是很困难的,因为结构主义的形式繁多,没有一个公分母,而且大家说到的种种“结构”,所获得的涵义越来越不同。不过,如果把在当代各种科学中和越来越时髦的流行讨论中的结构主义所具有的不同涵义加以比较,似乎还是有可能来做一次综合的尝试的。但是,如要进行这种综合,有一个明确的条件,就是必须对于事实上总是联系在一起而法理上又应该互相独立看待的两个问题,分别开来考虑:一

的子群,
以及有可能通过这些子群之一过渡到另一些子群,这些转换在某种程度上是可以加以配
方的。就是因为这样,除了被位移图形的大小之外(因此是距离),位移群让它的角、
平行线、直线等保持不变。于是人们能使大小改变而保持其余一切不变,就得到一个较
普遍的群,而原位移群成了这个更普遍的群中的一个子群:这就是相似群,可以在不改
变形状的情况下放大图象。接着,人们可以改变图象的各个角,但是保持它原来的平行
线和直线等,这样就得到了一个更普遍的群,而上述相似群就成了它的一个子群,这就是
“仿射”几何群,例如,把一个菱形改变成另一个菱形,这个群就要发生作用。继续把
平行线改变而保留直线,于是就得到一个“射影”群(透视等),先前那些图象所构成
的群就成了它嵌套的子群了。最后,连这些直线也不保留,而在某种程度上把某些图象
看作是有弹性的,唯一被保留下来的是图象上各个点之间一一对应的、或对应连续的对
应关系,于是这就产生了最普遍的群,即拓扑学所特有的“同型拓扑”(homeomorphie
s)群。这样,各种不同的几何学原先看来是静态的、纯粹图形化的、分散在不相联系的
章节里描写的模型,现在使用群结构之后,就正好形成了一个巨大的构造,其转换作用,
因为有了子群之间的嵌套接合关系(emboltement),就可以使得从一个子结构向另一个
子结构过渡成为可能(且不谈普通测量学;我们可以依靠拓扑学,从普通测量学中引出
非欧几何或欧氏几何的特殊测量学,从而再回到位移群上来)。克莱因(F.Klein)在
《埃尔兰根纲领》(Programme d’Erlangen)这部著名著作里所陈述的,就是这个从图
形几何变成一整个转换体系的根本改变。这是由于群结构的运用而为我们取得了的可以
称之为是结构主义的确实胜利的第一个实例。

6.母结构

但这还只是一个部分的胜利。在数学界可以称之为结构主义学派的,也就是布尔巴
基学派(les Bourbaki)的特征的乃是企图使全部数学服从于结构的观念。
传统的数学,是由各不相关的章节如代数、数论、数学分析、几何、概率论等等所
形成的一个整体,其中每一部分研究一个特定的领域,各自研究若干被
内在性质所决定
的“存在”或对象。群结构可以应用于极不相同的成分,而不是仅仅适用于代数的运算。
这个事实促使布尔巴基学派按照类似的抽象原理来展开对种种结构的研究。如果我们能
把诸如数、位移、射影等(而我们已经看到,这里既有运算的结果,也有加在运算本身
上的运算)这些已被抽象化了的

《结构主义》作者:皮亚杰(JEANPIAGET) 倪连生、(10).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219