2010年中考数学专题复习教学案27 全等三角形(含答(3)
时间:2025-04-21
时间:2025-04-21
例2(2009年河南)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.
【分析】首先进行判断:OE⊥AB,由已知条件不难证明△BAC≌△ABD,得∠OBA=∠OAB再利用等腰三角形“三线合一”的性质即可证得结论。解决此类问题,要熟练掌握三角形全等的判定、等腰三角形的性质等知识。 答案:OE⊥AB. 证明:在△BAC和△ABD中,
AC=BD,
∠BAC=∠ABD, AB=BA.
∴△BAC≌△ABD. ∴∠OBA=∠OAB,
∴OA=OB.
又∵AE=BE, ∴OE⊥AB.
(注:若开始未给出判断“OE⊥AB”,但证明过程正确,不扣分)
例3(2009年山东临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点. AEF 90,且EF交正方形外角 DCG的平行线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证
△AME≌△ECF,所以AE EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
上一篇:流量计及风机选择