线性回归短期负荷预测(16)
时间:2025-04-23
时间:2025-04-23
本文档最好用office07打开
的实际问题中,回归方程的因变量一般是电力系统负荷,自变量是影响电力系统负荷的各种因素,如社会经济、人口、气候等。
回归方程根据自变量和因变量之间的函数形式,可分为线性回归方程和非线性回归方程两种;根据回归分析涉及道德变量的数量,可以分为单元回归分析和多元回归分析。因此回归模型分为一元线性回归模型、多元线性回归模型、一元非线性回归和多元非线性回归。变量之间的关系是线性关系的模型称为线性回归模型,否则就称之为非线性回归模型。在整个回归分析中,线性回归模型最为重要。一方面是因为线性回归的应用广泛,另一方面是只有在假设回归模型为线性的情况下,才能得到比较深入的结果,而且许多非线性回归模型可以通过适当的转化变为线性回归问题。因此,线性回归模型的理论和应用是回归研究的重点。
设线性回归模型的数学表达形式为:
= , (3-2)
其中:A为该预测模型的参数向量;x为自变量( 向量或标量) ;y为因变量(待预测量)。回归预测的重点是通过某种途径估计模型的参数向量A。在求得A后, 拟合(历史时段)或预测(未来时段)公式为:
= , (3-3)
其中 为自变量在t时段的取值。如果将实际值与拟合值之差称为拟合误差, 表示为: = = , t=1,2, ,n (3-4) 则回归分析的目标是使各时段拟合误差的平方和P最小,
2
= =1 (3-5)
3.2.2 线性回归的特点
虽然线性回归分析法是电力负荷预测的一种常用方法,但这种方法在不能全面的考虑气象因素,只能片面的考虑诸如温度、湿度等定量条件,而无法处理变化较多的天气状况。由于模型是基于历史数据进行的线性回归分析,能较好地拟合过去,但对于未来的预测其效果会随时间的延长而减弱。电力负荷回归分析法是通过对影响因子值(比如国民生产总值、工农业总产值、气候、人口等等)和用电的历史资料进行统计分析,确定用电量和影响因子之间的函数关系,从而实现预测。但由于回归分析中,选用何种因子和该因子系用何种表达式有时只是一种推测,而且影响用电因子的多样性和某些因子的不可测性,使得回归分析在某些情况下会受到限制。
线性回归预测法作为传统的预测方法,其优点是模型参数估计技术比较成熟,预测过程简单,预测速度快,预测精度比较高,外推特性较好,对于历史上未出现过的情况有比较好的预测值,在没有气象条件巨变的情况下,其负荷预测准确性较高。但它也有一些不足之处,该方法缺点是:预测精度较低,缺乏自学习能力,对历史数据的要求比较高,用线性方法无法描述复杂的非线性关系,在线应用时的递推算法还不完善,同时由于受各种
下一篇:园林施工图基本制图规范2011