浅谈不定积分的几种简单解法.doc(13)
发布时间:2021-06-07
发布时间:2021-06-07
dxse2cxd(taxn)
a2si2nx b2cos2 a2ta2nx b2 令x a2ta2nx b2
t tanx,就有
dxdt1d at 2 a2si2
a (at)2 b2nx b2cosx a2t2 b2
1at1a
arct c arcttanx) cabbabb
总结
不定积分是微积分中重要的部分,不定积分的概念,性质,求法,以及应用在数学分析中有着至关重要的位置,也是微积分中的基础部分,所以掌握不定积分的求法是学习微积分的基础,不定积分的求法很多种,这里主要讲了利用定义求法、直接积分法、第一类换元积分法、第二类换元积分法、分步积分法五种最基本的方法,也是最常用的方法,遇到不定积分的题目时,应当先分析题目结构,然后选择最方便求解的方法。
本文的写作目的在于让大家了解积分的基本知识,认识到积分的学习不难,只要细心总结,认真学习基本知识,那么不定积分的求法就可以深刻的掌握,对高等数学可以从容应对。
在这篇论文的写作过程中,我感受到了知识的丢失和自己知识面的不足,不能系统全面得总结不定积分的知识。同时认识到即使是旧知识,只要细心总结,认真思考,都会有所收获,积分知识关键在于学习。
由于时间以及个人的一些原因。本论文未能对不定积分的求法作深入的探讨,只考察了不定积分的基本性质和不定积分求法的五种方法,而且讨论主要介绍了计算方法的原理和简单实例,而且讨论较为粗浅。事实上,积分是高等数学必须掌握的基础知识,在现代科技中有大量的应用。也是深入研究数学的基础。