Storage device performance prediction with CART models(4)

时间:2025-07-10

Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment. This work explores the application of a machine learning tool, CART models, to storage device modeling. Our appr

usingsimulatorsisalsoresourceintensive.Analyticalmodels[7,22,24,30,31]aremorecomputationallyef cientbecausethesemodelsdescribedevicebehaviorwithasetofformulae.Findingtheformulasetrequiresdeepunderstandingoftheinteractionbetweenstoragedevicesandworkloads.Inaddition,bothdisksimulatorsandanalyticalmodelsaretightlycoupledwiththemodeleddevice.Therefore,newdevicetechnologiesmayinvalidateexistingmodelsandrequireanewroundofmodelbuilding.

OurapproachusesCART,whichtreatsstoragedevicesasblackboxes.Asaresult,themodelconstruc-tionalgorithmisfullyautomatedandshouldbegeneralenoughtohandleanytypeofstoragedevice.Thedegenerateformsof“black-boxmodels”areperformancespeci cations,suchasthemaximumthroughputofthedevices,publishedbydevicemanufacturers.Theactualperformance,however,willbenowherenearthesenumbersundersomeworkloads.Anderson’s“table-based”approach[3]includesworkloadcharacter-isticsinthemodelinput.Thetable-basedmodelsrememberdevicebehaviorforawiderangeofworkloadanddevicepairsandinterploatesamongtablesentriesinpredicting.Anderson’smodelsareusedinanautomatedstorageprovisiontool,Ergastulum[2],whichformulatesautomaticstorageinfrastructureprovi-sioningasanoptimizationproblemandusesdevicemodelstoguidethesearchalgorithminlocatingthesolution.Ourapproachimprovesonthetable-basedmodelsbyemployingmachinelearningtoolstocapturedevicebehavior.Becauseofthegoodscalabilityofthetoolstohighdimensionaldatasets,weareabletousemoresophisticatedworkloadcharacteristicsasthemodelinput.Asaresult,themodelsaremoreef cientinbothcomputationandstorage.

Workloadcharacterizationisanimportantpartofdevicemodelingbecauseitprovidesasuitablerep-resentationofworkloads.Despiteabundantpublishedworkinmodelingwebtraf c[23,25,8],I/Otraf cmodelingreceiveslessattention.Directapplicationofwebtraf canalysismethodstoI/worktraf chasacategoricaladdressspace,andthereisnonotionofsequentialscans.Incontrast,theperformancevariabilitycanbeseveralordersofmagnitudebetweenrandomandsequentialaccessesforI/Oworkloads.Ganger[10]pointedoutthecomplexityofI/Oworkloads,andeventhedetectionofsequentialscansisahardproblem[19].Gomezetal.[14]identi edself-similarityinI/Otraf candadoptedstructuralmodelstogenerateI/Oworkloads.Kurmasetal.[20]employedaniterativeapproachtodetectimportantworkloadcharacteristics.Rome[34]providedageneralframeworkofworkloadspeci cations.Alltheapproaches,inonewayoranother,useempiricaldistribu-tionsderivedfromgivenworkloadsastheparametervalues.Ourpreviouswork[32]takesadvantageoftheself-similarityofI/Oworkloadsandproposesatool,the“entropyplot,”tocharacterizethespatio-temporalcharacteristicsofI/Oworkloadswiththreescalars.SinceourCART-basedmodelsrequireworkloadstobepresentedintheformofvectorsofscalars,theentropyplotisanattractivechoice.

3Background:CARTModels

ThissectiongivesabriefintroductionoftheCARTmodelsandjusti esourchoiceofthetool.AdetaileddiscussionofCARTisavailablein[4].

3.1CARTModels

CARTmodelingisamachinelearningtoolthatcanapproximaterealfunctionsinmulti-dimensionalCarte-fXε,sianspace.(Itcanalsobethoughtofasatypeofnon-linearregression.)GivenafunctionY

dwhereX ,Y ,andεiszero-meannoise,aCARTmodelapproximatesYusingapiece-wiseconstant f X.WerefertothecomponentsofXasfeaturesinthefollowingtext.Theterm,ε,capturesfunction,Y

theintrinsicrandomnessofthedataandthevariabilitycontributedbytheunobservablevariables.Thevari-anceofthenoisecouldbedependentonX.Forexample,thevarianceofresponsetimeoftendependsonthearrivalrate.

…… 此处隐藏:1669字,全部文档内容请下载后查看。喜欢就下载吧 ……
Storage device performance prediction with CART models(4).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219