Storage device performance prediction with CART models(5)

时间:2025-07-10

Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment. This work explores the application of a machine learning tool, CART models, to storage device modeling. Our appr

x<5.94851

x<3.23184

x<7.7123 100

x<9.0008x<1.92033

x<5.0035x<7.05473

80 60 40 20 0

y

f(x) = x * x

CART

x<1.69098

x<3.60137

30.83 48.68 56.33 72.06 16.64 26.85x<4.4543x<0.889

88.01 2.57 21.67 -1.92 6.05 8.94-20

0 2 4

x

6 8 10

(a)Fittedtree

(b)Datapointsandregressionline

Figure1:CARTmodelforasimpleone-dimensionaldataset.Thedatasetcontains100datapointsgen-x2ε,whereεfollowsaGuassiandistributionwithmean0andstandarddeviationeratedusingfx

10.

Thepiece-wiseconstantfunctionf Xcanbevisualizedasabinarytree.Figure1(a)showsaCARTmodelconstructedonthesampleone-dimensionaldatasetin(b).Thesampledatasetisgeneratedusing

yi

x2i

εi

i

12

100

wherexiisuniformlydistributedwithin(0,10),andεifollowsaGuassiandistributionofN010.The

leafnodescorrespondtodisjointhyper-rectanglesinthefeaturevectorspace.Thehyper-rectanglesaredegeneratedintointervalsforone-dimensionaldatasets.Eachleafisassociatedwithavalue,f X,whichisthepredictionforallXswithinthecorrespondinghyper-rectangle.Theinternalnodescontainsplitpoints,andapathfromtheroottoaleafde nesthehyper-rectangleoftheleafnode.Thetree,therefore,representsapiece-wiseconstantfunctiononthefeaturevectorspace.Figure1(b)showstheregressionlineofthesampleCARTmodel.

3.2CARTModelProperties

CARTmodelsarecomputationallyef cientinbothconstructionandprediction.Theconstructionalgorithmstartswithatreewithasinglerootnodecorrespondingtotheentireinputvectorspaceandgrowsthetreebygreedilyselectingthesplitpointthatyieldsthemaximumreductioninmeansquarederror.AmoredetaileddiscussionofthesplitpointselectionispresentedinAppendixA.Eachpredictioninvolvesatreetraversaland,therefore,isfast.

CARToffersgoodinterpretabilityandallowsustoevaluatetheimportanceofvariousworkloadchar-acteristicsinpredictingworkloadperformance.ACARTmodelisabinarytree,makingiteasytoplotonpaperasinFigure1(a).Moreimportantly,onecanevaluateafeature’simportancebyitscontributioninerrorreduction.Intuitively,amoreimportantfeatureshouldcontributemoretotheerrorreduction;thus,leavingitoutofthefeaturevectorwouldsigni cantlyraisethepredictionerror.InaCARTmodel,weusethesumoftheerrorreductionrelatedtoalltheappearancesofafeatureasitsimportance.

3.3ComparisonWithOtherRegressionTools

OtherregressiontoolscanachievethesamefunctionalityasCART.WechoosetouseCARTbecauseofitsaccuracy,ef ciency,robustness,andeaseofuse.Table1comparesCARTwithfourotherpopulartoolsto

…… 此处隐藏:583字,全部文档内容请下载后查看。喜欢就下载吧 ……
Storage device performance prediction with CART models(5).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219