Storage device performance prediction with CART models(15)
时间:2025-07-10
时间:2025-07-10
Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment. This work explores the application of a machine learning tool, CART models, to storage device modeling. Our appr
200
# of intervals
1501005000%
25%50%75%100%% of sequential requests
(a)Histogramsonsequentiality(b)Averageabsoluteerror(c)Absoluteerrordistribution
Figure8:Effectsofdifferenttrainingworkloads.
6Conclusions
Storagedeviceperformancemodelingisanimportantelementinself-managedstoragesystemsandotherapplicationplanningtasks.Ourtargetmodeltakesaworkloadasinputandpredictsitsaggregateperfor-manceonthemodeleddeviceef cientlyandaccurately.Thispaperpresentsourinitialresultsinexploringmachinelearningtoolstobuilddevicemodels.Ablackboxpredictivetool,CART,makesdevicemodelsindependentofthestoragedevicesbeingmodeled,andthus,generalenoughtohandleanytypeofdevices.Themodelconstruction,alsoknownastraining,consistsoftwophases:replayingtracesonthedevicesandbuildingaCARTmodelbasedontheobservedresponsetimes.Modelinganewdeviceinvolvesonlytrainingonthetargetdevice.
CART-basedmodelstakeinputintheformofvectors,soworkloadsmustbetransformedintovectorsinordertouseCARTasthebasisfordevicemodels.Thispaperpresentstwowaystoaccomplishsuchatransformation,yieldingtwotypesofdevicemodels.Therequest-leveldevicemodelsrepresenteachrequestasavectorandpredictitsresponsetime.Asaresult,themodelsareabletopredicttheentireresponsetimedistribution.Theexperimentsshowthatthepredictedresponsetimehasademerit gureof33%foramodernUNIX leservertrace,leadingtoamedianrelativeerroraslowas16%foraggregateperformancepredictions.Theworkload-leveldevicemodels,ontheotherhand,transformaworkloadfragmentintoavectorandpredictitsaggregateperformancedirectly.Thevectortakesadvantageoftheef ciententropyplotmetrictocapturethetemporalandspatialburstinessaswellasthecorrelationswithinI/Oworkloads.Themedianrelativeerrorcanbeaslowas29%fortheworkload-leveldevicemodels.
Theerroranalysissuggeststhatthequalityofthetrainingworkloadsplaysacriticalroleinthemodelaccuracy.Themodelsareunabletopredictworkloadsthataredifferentfromthetrainingworkloads.Toaccuratelypredictarbitraryworkloads,itisimportantforthetrainingworkloadstobeasdiverseaspossibletocoverawiderangeofworkloads.Ourfutureworkwillexploretheeffectivenessofexistingsyntheticworkloadgeneratorsinproducinghigh-qualitytrainingworkloads.
Continuingresearchcanimprovethemodelpredictionaccuracy.First,ourexperimentsshowtherele-vanceoftrainingtraces.Generatingrulestoassistintrainingsuchmodelsbroadlyenoughwillbeimportant.Second,theworkloadcharacterizationproblempersists,affectingtheworkload-levelmodels.Webelieve,however,thatthecontextofferedbythemodelscanhelpproduceinsightintothislong-standingproblem.Third,thetwotypesofdevicemodelsshowdesirablepropertiesintrainingandpredicting,respectively.Itshouldbevaluabletohaveamodelthatcombinesthebestofbothapproaches.
…… 此处隐藏:913字,全部文档内容请下载后查看。喜欢就下载吧 ……下一篇:中国食物成分表(全)2010版