Storage device performance prediction with CART models(12)
时间:2025-07-10
时间:2025-07-10
Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment. This work explores the application of a machine learning tool, CART models, to storage device modeling. Our appr
Predicted response time (ms)
1600 1200 800 400 0
100 %80 %% of requests
60 %40 %20 %0 %
ActualPredicted
1000 2000 3000 4000
Response time (ms)
400 800 1200Actual response time (ms)
1600
(a)Scatterplot(b)Responsetimedistribution
Figure5:Predictionaccuracyoftherequest-levelmodel.Theactualandpredictedaverageresponsetimesare137.96msand133.01msrespectively.Thecorrespondingdemerit,de nedin[28]astherootmeansquareofhorizontaldistancebetweentheactualandpredictedcurvesin(b),is46.06milliseconds(33.4%oftheactualaverageresponsetime).
effectiveincapturingrequest-levelcharacteristicsneededtopredictresponsetimes.
Insummary,therequestdescriptioneffectivelycapturesimportantper-requestcharacteristics,leadingtoaccuraterequest-leveldevicemodels.
5.2ModelingASingleDisk
Figure6comparestheaccuracyofallthepredictorsinmodelinganAtlas10K9GBdiskonreal-worldtraces.Asmentionedearlier,allthepredictorsaretrainedusingthe rsttwoweeksofcello99a.Overall,thetwoCART-baseddevicemodelsprovidegoodpredictionaccuracyinpredictingboththeaverageand90thpercentileresponsetimes,comparedtootherpredictors.Severalmoredetailedobservationscanbemade.
First,allofthemodelsperformthebestwhenthetrainingandtestingtracesarefromthesameworkload,e.g.cello99a,becausethemodelshaveseenhowthedevicebehavesundersuchworkloads.Thepredictoralsocutsthemedianpredictionerrorofthepredictorbymorethanahalfbecauseofthestrongperiodicityoftheworkload.andfurtherreducetheerrorto4.84milliseconds(19%)and14.83milliseconds(47%)respectivelyfortheaverageresponsetimeprediction,and20.46milliseconds(15%)and49.50milliseconds(45%)respectivelyforthe90thpercentile.Theperfor-androughlymeasuresthebene tofusinganon-linearmancedifferencebetween
model,suchasCART,becausebothacceptthesameinput.Weobserveasigni cantimprovementfromtheformertothelatter,suggestingnon-lineardevicebehavior.
Second,bothCART-baseddevicemodelsinterpolatebetteracrossworkloadsthantheothermodels.
andrelyblindlyonsimilaritiesbetweenthetrainingandtestingworkloadstomake
goodpredictions.Consequently,itisnotsurprisingtoseehugepredictionerrorswhenthetrainingandtestingworkloadsdiffer.TheCART-basedpredictors,ontheotherhand,areabletodistinguishbetweenworkloadsofdifferentcharacteristicsandaremorerobusttothedifferencebetweenthetrainingandtestingworkloads.
Third,modelaccuracyishighlydependentonthetrainingworkloadqualityfortheCART-basedmodels.Thepredictionerrorincreasesforworkloadsotherthancello99a,becauseoftheaccesspatterndifferencesamongthesetraces.TheCART-basedmodelslearndevicebehaviorthroughtraining;therefore,theycannotpredictperformanceforworkloadsthathavetotallydifferentcharacteristicsfromthetrainingworkloads.
…… 此处隐藏:877字,全部文档内容请下载后查看。喜欢就下载吧 ……下一篇:中国食物成分表(全)2010版