Storage device performance prediction with CART models

时间:2025-07-10

Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment. This work explores the application of a machine learning tool, CART models, to storage device modeling. Our appr

StorageDevicePerformancePredictionwithCART

Models

MengzhiWang,KinmanAu,AnastassiaAilamaki,

AnthonyBrockwell,ChristosFaloutsos,andGregoryR.Ganger

CMU-PDL-04-103

March2004

ParallelDataLaboratoryCarnegieMellonUniversityPittsburgh,PA15213-3890

Abstract

Storagedeviceperformancepredictionisakeyelementofself-managedstoragesystemsandapplicationplanningtasks,suchasdataassignment.Thisworkexplorestheapplicationofamachinelearningtool,CARTmodels,tostoragedevicemodeling.Ourapproachpredictsadevice’sperformanceasafunctionofinputworkloads,requiringnoknowledgeofthedeviceinternals.WeproposetwousesofCARTmodels:onethatpredictsper-requestresponsetimes(andthenderivesaggregatevalues)andonethatpredictsaggregatevaluesdirectlyfromworkloadcharacteristics.Afterbeingtrainedonourexperimentalplatforms,bothprovideaccurateblack-boxmodelsacrossarangeoftesttracesfromrealenvironments.Experimentsshowthatthesemodelspredicttheaverageand90thpercentileresponsetimewithanrelativeerroraslowas16%,whenthetrainingworkloadsaresimilartothetestingworkloads,andinterpolatewellacrossdifferentworkloads.

Acknowledgements:WethankthemembersandcompaniesofthePDLConsortium(includingEMC,Hewlett-Packard,Hitachi,HitachiGlobalStorageTechnologies,IBM,Intel,LSILogic,Microsoft,NetworkAppliance,Oracle,Panasas,Seagate,Sun,andVeritas)fortheirinterest,insights,feedback,andsupport.WethankIBMforpartlyfundingthisworkthroughaCASstudentfellowshipandafacultypartnershipaward.ThisworkisfundedinpartbyNSFgrantsCCR-0205544,IIS-0133686,BES-0329549,IIS-0083148,IIS-0113089,IIS-0209107,andIIS-0205224.WewouldalsoliketothankEnoThereska,MikeMesnier,andJohnStrunkfortheirparticipationanddiscussionintheearlystageofthisproject.

Storage device performance prediction with CART models.doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219