Storage device performance prediction with CART models(20)

时间:2025-07-10

Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment. This work explores the application of a machine learning tool, CART models, to storage device modeling. Our appr

1 0.8Entropy value

0.8 0.6 0.4 0.2

Time and RWLocation and RW

0.8 0.6 0.4 0.2 0

Time and SizeLocation and Size

5

10 15Scale

20

25

Entropy value

0.6 0.4 0.2 0

0 1 2

3 4Scale

5 6 7 0 5

10 15Scale

20 25

(a)Entropyplotontime(b)Entropyplotwithoperationtype

Entropy value

(c)Entropyplotwithsize

Figure10:Entropyplotstoquantifyotherworkloadcharacteristics.

Asimilarcalculationonthetrace’s“margin”onLBNgivestheentropyplotonLBN.Figure9(b)showstheentropyplotonbotharrivaltimeandLBNofthesampletrace.

Wemaketwoobservations.First,theentropyplotshowsstronglinearity,suggestingtheskewinarrivaltimeandLBNstaysconstantatallgranularities.Theconstantincrementoftheentropyvaluefromonescaletothenextsuggeststhatthedegreeofskewstaysthesameatallthescales.Thatis,thesampletracehasthesameburstinessatallscales,whichcon rmstheself-similarityofI/Oworkloadsobservedinpreviousstudies[13].Second,thelinearentropyplotallowsustousetheentropyplotslopestocharacterizetheburstiness.Smoothtraf chasanentropyplotofslopecloseto1.Real-worldtraces,however,havestrongburstiness.Insummary,theentropyplotde nedonthetracemarginsallowsustousetwoscalarstocharacterizeboththetemporalandspatialburstinessofI/Oworkloads.

Entropyplotontwo-dimensionaldatasets.Weextendtheentropyplottohandletwo-dimensionaldatasetstomeasurethecorrelationsbetweentwoattributes.Asbefore,theentropyplotcalculatestheentropyvalueatdifferentscales,onlythistimeontwo-dimensionaldatasets.Givenatwo-dimensionalprojectionofa

2n,wedividetheprojectioninto2k2kgrids,whichaggregatesbothdimensionstrace,Cijij12

withscalek.ThisgivesaseriesCkof2k2kelements.ApplyingtheentropyfunctiontoCkgivesthejointentropyvalueatscalekonthetwodimensions.

Thejointentropyallowsustocalculatethecorrelationbetweenthetwoattributes.Thecorrelationisthedifferencebetweenthesumoftheentropyvalueonthetwoattributesandthejointentropyplot.Figure9(b)showsboththejointentropyandthecorrelationonarrivaltimeandLBNforthesampledisktrace.WeobservethatastrongcorrelationexistsbetweenarrivaltimeandLBN,andalsothatthecorrelationstaysconstantatallscales.Thus,weareabletouseascalarvalue,thecorrelationslope,toquantifythecorrelationbetweenarrivaltimeandLBN.

Entropyplotinvolvingrequestsizeandoperationtype.Itispossibletoextendtheentropyplottohandleoperationtypeandrequestsize.Theonlydifferenceisthelimitedvaluerangesofthetwoattributes,whichlimitthenumberofdatapointsintheentropyplot.Asaresult,theworkloaddescriptiondoesnotincludeentropyplotslopesonthesetwoattributes.

Quantifyingthecorrelationsinvolvingeitherofthetwoattributesfacesthesameproblem.Oursolutionistoalwaysusethe nestgranularityontherequestsizeoroperationtype,buttochangethescaleontheotherattribute.Forexample,tocalculatethejointentropyplotonarrivaltimeandrequesttype,theaggregationhappensonlyonthearrivaltime.Figure10showstheentropyplotsthatinvolveoperationtypeandrequestsize.Theseentropyplotsarenotaslinearaspreviousones.Therefore,itisnotstraightforwardtocompresseachlineintoascalar.Currently,ourworkloaddescriptionusestheaverageincrementbetweentwoadjacentscales.

…… 此处隐藏:1260字,全部文档内容请下载后查看。喜欢就下载吧 ……
Storage device performance prediction with CART models(20).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219