Storage device performance prediction with CART models(18)

时间:2025-07-10

Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment. This work explores the application of a machine learning tool, CART models, to storage device modeling. Our appr

AppendixA:ConstructingCARTModels

ACARTmodelisapiecewise-constantfunctiononamulti-dimensionalspace.Thisappendixgivesabriefdescriptionofthemodelconstructionalgorithm.Pleasereferto[4]foracompletediscussionofCARTmodels.

TheCARTmodelhasabinarytreestructurebuiltbyrecursivebinarysplits.SupposewehaveNobser-vations,Xii12N,withcorrespondingoutputsYii12N.Eachobservationconsistsofpinputfeatures,Xixi1xip).Theconstructionalgorithmstartswithatreewithonlyarootnodeandgrowsthetreedownwardbysplittingonenodeatime.Thechosensplitoffersthemostbene tinreducingthemeansquarederror.TheaverageYiforalltheXisinaleafnodeisusedasthepredictivevaluefortheleafnode.Thealgorithmcontinuesuntilcertaincriteriaaremet.

Wedescribehowthesplitischosenindetailnext.Thealgorithmevaluatesallthepossibledistinctsplitsonalltheleafnodesofthetree(ortherootnodeinthe rststep).Anodecorrespondstoahyer-rectangleregionoftheinputvectorspace,andasplitdecidesalongwhichfeatureandatwhatvaluetheregionshouldbedividedintotwo.Forexample,atnodet,asplitonfeaturejatvaluevde nestwonodes,nodet1andnodet2.

Xi

nodet1

Xixij

v

Xi

nodet

Xi

nodet2

Xixij

v

Xinodet

IfwedenotethenumberofobservationsinnodetasNtandthepredictivevalueasYt,themeansquarederroratnodetbeforethesplitis

MSEt

i:Xinodet

1

Nt1

Yi

¯t1Y

2

i:Xinodet2

1

Storage device performance prediction with CART models(18).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219