Storage device performance prediction with CART models(14)

时间:2025-07-10

Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment. This work explores the application of a machine learning tool, CART models, to storage device modeling. Our appr

averageresponsetime

(b)predictionerrorfor90thpercentileresponsetime

Figure7:ComparisonofpredictorsforaRAID5diskarrayof8Atlas10Kdisks.

Amodel’serrorconsistsoftwoparts.The rstpartcomesfromintrinsicrandomnessoftheinputdata,suchasmeasurementerror,andthiserrorcannotbecapturedbyanymodel.Therestoftheerrorcomesfromthemodelingapproachitself.TheCART-basedmodelsincurerroratthreeplaces.First,thetransformationfromworkloadstovectorsintroducesinformationloss.Second,theCART-basedmodelsusepiece-wiseconstantfunctions,whichcouldbedifferentfromthetruefunctions.Third,alow-qualitytrainingtraceyieldsinaccuratemodelsbecauseCARTreliesontheinformationfromthetrainingdatatomakepredictions.Aninadequatetrainingsethasonlyalimitedrangeofworkloadsandleadstolargepredictionerrorsforworkloadsoutsideofthisrange.We ndthatthelasterrorsource,inadequatetrainingdata,causesthemosttroubleinourexperiments.

Weconductasmallexperimenttoverifyourhypothesis.Figure8(a)comparesthedifferenceinse-quentialitybetweencello99aandcello99c.Thespectrumofsequentiality(from0%to100%ofrequestsintheworkloadbeingsequential)isdividedinto20buckets,andthegraphsshowsthenumberofone-minuteworkloadfragmentsineachbucketforbothtraces.Weobserveasigni cantnumberofhighsequentialityfragmentsincello99b,butnofragmentgoesbeyond50%sequentialityincello99a.Thisdifferenceleadstolargepredictionerrorsforhighsequentialityfragmentswhenwebuildtheworkload-levelmodeloncello99aanduseittopredicttheperformanceofcello99b,asshownin(b).Theerrorsarereducedsigni cantlywhenweincludethe rsthalfofcello99bintraining.Thedramaticerrorreductionsuggeststhatpredictioner-rorsfromtheothersourcesarenegligiblewhencomparedwiththeonesintroducedbyinadequatetraining.Figure8(c)furthershowstheabsoluteerrorhistogramwith1millisecondbuckets.Thespikeshiftto0millisecondswhenwetrainthemodelonthecombinedtrainingtrace,indicatingthatitisreasonabletoas-sumeazero-meannoiseterm.Weconcludefromthisevidencethatcontributingeffortsinblack-boxdevicemodelingshouldbedirectedtowardgeneratingagoodtrainingsetthatcoversabroadrangeofworkloadtypes.

…… 此处隐藏:298字,全部文档内容请下载后查看。喜欢就下载吧 ……
Storage device performance prediction with CART models(14).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219