Storage device performance prediction with CART models(13)

时间:2025-07-10

Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment. This work explores the application of a machine learning tool, CART models, to storage device modeling. Our appr

averageresponsetime

(b)Predictionerrorfor90thpercentileresponsetime

Figure6:Comparisonofpredictorsforasingle9GBAtlas10Kdisk.

Forexample,constantlyover-predictsforcello99cbecausethemodelwasnevertrainedwththesmallsequentialaccessesthatareparticulartocello99c.Section5.4givesaninformalerroranalysisandidenti esinadequatetrainingbeingthemostsigni canterrorsource.

Fourth,highquantileresponsetimesaremoredif culttopredict.Weobservelargerpredictionerrorsfromallthepredictorsfor90thpercentileresponsetimepredictionsthanforaverageresponsetimepredic-tions.TheaccuracyadvantageofthetwoCART-basedmodelsishigherfor90thpercentilepredictions.

Insummary,thetwoCART-basedmodelsgiveaccuratepredictionswhenthetrainingandtestingwork-loadssharethesamecharacteristicsandinterpolatewellotherwise.Thegoodaccuracysuggeststheeffec-tivenessoftherequestandworkloaddescriptionsincapturingimportantworkloadcharacteristics.

5.3ModelingADiskArray

Figure7comparestheaccuracyofthefourpredictorsinmodelingthediskarray.ThepredictorisnotpresentedbecausetheSAPtracedoesnotprovideenoughinformationonarrivaltimeforustoknowtheoffsetwithinaweek.Theoverallresultsaresimilartothoseforthesingledisk.ThetwoCART-basedmodelsarethemostaccuratepredictors.Theabsoluteerrorsbecomesmallerduetothedecreasedresponsetimefromthesingledisktothediskarray.Therelativeaccuracyamongthepredictors,however,staysthesame.Overall,theCART-baseddevicemodelingapproachworkswellforthediskarray.

5.4ErrorAnalysis

Thissectionpresentsaninformalerroranalysistoidentifythemostsigni canterrorsourcefortheCART-baseddevicemodels.

Storage device performance prediction with CART models(13).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219