2013届高考数学知识点总结 2(16)
发布时间:2021-06-05
发布时间:2021-06-05
直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.
推论:如果两条直线同垂直于一个平面,那么这两条直线平行. [注]:①垂直于同一平面的两个平面平行.(³)(可能相交,垂直于同一条直线的两个平面.........平行)
②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)
③垂直于同一平面的两条直线平行.(√) 三、 平面平行与平面垂直.
1. 空间两个平面的位置关系:相交、平行.
2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)
推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. [注]:一平面间的任一直线平行于另一平面.
3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)
4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直. 两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)
注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.
5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线
P也垂直于另一个平面.
推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面
证明:如图,找O作OA、OB分别垂直于l1,l2,
O因为PM ,OA ,PM ,OB 则PM OA,PM OB. 五、 空间几何体
.异面直线所成角的求法:
(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;
(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;
.直线与平面所成的角(立体几何中的计算可参考空间向量计算) .二面角的求法
(1)定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;
特别:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。 .空间距离的求法
( )求点到直线的距离,一般用三垂线定理作出垂线再求解;
求点到平面的距离,一是用垂面法,借助面面垂直的性质来作,因此,确定已知面的垂面是关键;二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求解; 正方体和长方体的外接球的直径等与其体对角线长;
柱体的体积公式:柱体(棱柱、圆柱)的体积公式是V柱体=Sh.其中S是柱体的底面积,h是柱体的高.
上一篇:闽建建[2006]37号 关于印发《福建省建筑施工企业
下一篇:世界遗产在中国