Fitting Parameterized Three-dimensional Models to Images(8)
发布时间:2021-06-05
发布时间:2021-06-05
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
4.1Newton’smethodandleast-squaresminimization
Ratherthansolvingdirectlyforthevectorofnon-linearparameters,,Newton’smethodcom-putesavectorofcorrections,,tobesubtractedfromthecurrentestimateforoneachitera-
istheparametervectorforiteration,then,tion.If
Givenavectoroferrormeasurements,,betweencomponentsofthemodelandtheimage,wewouldliketosolveforanthatwouldeliminatethiserror.Basedontheassumptionoflocallinearity,theaffectofeachparametercorrection,,onanerrormeasurementwillbemultipliedbythepartialderivativeoftheerrorwithrespecttothatparameter.Therefore,wewouldliketosolveforinthefollowingmatrixequation:
whereJistheJacobianmatrix:
Eachrowofthismatrixequationstatesthatonemeasurederror,,shouldbeequaltothesumofallthechangesinthaterrorresultingfromtheparametercorrections.Ifalltheseconstraintscanbesimultaneouslysatis edandtheproblemislocallylinear,thentheerrorwillbereducedtozeroaftersubtractingthecorrections.
Iftherearemoreerrormeasurementsthanparameters,thissystemofequationsmaybeoverdetermined(infact,thiswillalwaysbethecasegiventhestabilizationmethodspresentedbelow).Therefore,wewill ndanthatminimizesthe2-normoftheresidualratherthansolvesforitexactly:
min
Since
solutionasthenormalequations,,itcanbeshownthatthisminimizationhasthesame
whereisthetransposeofJ.Thisminimizationismakingtheassumptionthattheoriginalnon-linearfunctionislocallylinearovertherangeoftypicalerrors,whichistruetoahighdegreeofapproximationfortheprojectionfunctionwithtypicalerrorsinimagemeasurements.
andTherefore,oneachiterationofNewton’smethod,wecansimplymultiplyout
inthenormalequations(1)andsolveforusinganystandardmethodforsolvingasystemoflinearequations.Manynumericaltextscriticizethisuseofthenormalequationsaspotentiallyunstable,andinsteadrecommendtheuseofHouseholderorthogonaltransformationsorsingularvaluedecomposition.However,aclosestudyofthetrade-offsindicatesthatinfactthenormalequationsprovidethebestsolutionmethodforthisproblem.ThesolutionusingthenormalequationsrequiresonlyhalfasmanyoperationsastheHouseholderalgorithm(andanevensmallerfractionwithrespecttoSVD),butrequiresaprecisionoftwicetheword-lengthof
8