Fitting Parameterized Three-dimensional Models to Images(8)

时间:2025-03-07

Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with

4.1Newton’smethodandleast-squaresminimization

Ratherthansolvingdirectlyforthevectorofnon-linearparameters,,Newton’smethodcom-putesavectorofcorrections,,tobesubtractedfromthecurrentestimateforoneachitera-

istheparametervectorforiteration,then,tion.If

Givenavectoroferrormeasurements,,betweencomponentsofthemodelandtheimage,wewouldliketosolveforanthatwouldeliminatethiserror.Basedontheassumptionoflocallinearity,theaffectofeachparametercorrection,,onanerrormeasurementwillbemultipliedbythepartialderivativeoftheerrorwithrespecttothatparameter.Therefore,wewouldliketosolveforinthefollowingmatrixequation:

whereJistheJacobianmatrix:

Eachrowofthismatrixequationstatesthatonemeasurederror,,shouldbeequaltothesumofallthechangesinthaterrorresultingfromtheparametercorrections.Ifalltheseconstraintscanbesimultaneouslysatis edandtheproblemislocallylinear,thentheerrorwillbereducedtozeroaftersubtractingthecorrections.

Iftherearemoreerrormeasurementsthanparameters,thissystemofequationsmaybeoverdetermined(infact,thiswillalwaysbethecasegiventhestabilizationmethodspresentedbelow).Therefore,wewill ndanthatminimizesthe2-normoftheresidualratherthansolvesforitexactly:

min

Since

solutionasthenormalequations,,itcanbeshownthatthisminimizationhasthesame

whereisthetransposeofJ.Thisminimizationismakingtheassumptionthattheoriginalnon-linearfunctionislocallylinearovertherangeoftypicalerrors,whichistruetoahighdegreeofapproximationfortheprojectionfunctionwithtypicalerrorsinimagemeasurements.

andTherefore,oneachiterationofNewton’smethod,wecansimplymultiplyout

inthenormalequations(1)andsolveforusinganystandardmethodforsolvingasystemoflinearequations.Manynumericaltextscriticizethisuseofthenormalequationsaspotentiallyunstable,andinsteadrecommendtheuseofHouseholderorthogonaltransformationsorsingularvaluedecomposition.However,aclosestudyofthetrade-offsindicatesthatinfactthenormalequationsprovidethebestsolutionmethodforthisproblem.ThesolutionusingthenormalequationsrequiresonlyhalfasmanyoperationsastheHouseholderalgorithm(andanevensmallerfractionwithrespecttoSVD),butrequiresaprecisionoftwicetheword-lengthof

8

…… 此处隐藏:354字,全部文档内容请下载后查看。喜欢就下载吧 ……
Fitting Parameterized Three-dimensional Models to Images(8).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219