Fitting Parameterized Three-dimensional Models to Images(19)
时间:2025-03-09
时间:2025-03-09
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
Figure7:Aftertheseconditerationofconvergence,themodelisshownsuperimposedontheoriginalimage.
onlyasmallsubsetofthepredictedimageedges.However,duetotheoverconstrainednatureoftheproblem,inwhichfarmoremeasurementsareavailablethanunknownparameters,the nalresultcanbereliableandaccurate.
7Conclusionsandfuturedirections
Thispaperhaspresentedgeneralmethodsfor ttingmodelswitharbitrarycurvedsurfacesandanynumberofinternalparameterstomatchedimagefeatures.Considerableattentionhasbeengiventoissuesofrobustnessandef ciency,andthesetechniquesshouldserveasapracticalbasisformodel ttinginmostapplicationsofmodel-basedvision.
Thereareanumberofdirectionsinwhichthesemethodscouldbefurtherimproved.Oneisindealingwithobjectsthathaveverylargenumbersofvariableparameters.Sincethecomplex-
inthenumberofvariables,itwouldlikelybemoreityofsolvingalinearsystemrisesas
ef cienttopartitionproblemswithverylargenumbersofparametersintosmallersubsets.Thesimultaneoussolutionmethodwouldbeusedforallparameterswithlargerangesofuncertainty,buttheremainingoneswouldbesolvedforonthebasisoflocalindependentoptimization.Thiswouldbecomeparticularlyimportantifgenericclassesofobjectsaremodeled,aswasdonein
19