Fitting Parameterized Three-dimensional Models to Images(11)
发布时间:2021-06-05
发布时间:2021-06-05
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
whereistheorientationofthelinewithrespecttothe-axisandisthesignedperpendicular
intotheleftsideofdistanceofthelinefromtheorigin.Ifwesubstituteanimagepoint
thisequationandcalculateanew,thenthesignedperpendiculardistanceofthispointfrom
.Thepartialderivativeofthisperpendicularerrormeasureisjustalinearthelineis
combinationofthepartialderivativesofand:
Inpractice,wecalculateandfrom2points,
bethelengthofthelinebetweenthesepoints:and,ontheline.Let
then
and
Theperpendicularerrorismeasuredbetweenselectedpointsontheimagecurveandtheperpendicularprojectionofthispointontotheclosestsegmentoftheprojectedmodelcurve.Thisdeterminationoftheclosestmatchingpointisupdatedoneachiterationofconvergence.
4.4Determiningastartingpositionforconvergence
Worrall,Baker&Sullivan[34]havestudiedtherangeofconvergencefortheauthor’searlierversionofthisalgorithmusingMonteCarlotechniques.Theyfoundthatthealgorithmwouldconvergetothecorrectsolutioninvirtuallyeverycaseforrotationerrorsoflessthan90degrees(translationerrorshavealmostnoeffect).Thenumberofiterationsriseswithincreasingerrorsuptoanaverageofabout6iterationsat90degrees.Withthestabilizationmethodsdescribedinthenextsection,convergenceissigni cantlyimprovedovereventheselevels.
Therefore,theaccuracyrequirementsfordeterminingtheinitialstartingpositionarequiteminimal.Forthemotiontrackingproblemwhichservesasourinitialfocus,wesimplyusetheparameterestimatesfromthepreviousframeaddedtoavelocityestimateforeachparameterobtainedfromtheprevious2frames.Forageneralrecognitionproblem,propertiesoftheimagematchesthatarebeing ttedcanbeusedtodetermineinitialparameterestimates.Forrotationindepth,eachmatchcanvoteforameandirectionfromwhichitisvisible(veryfewmodelfeaturesarevisiblefromallviewpoints)andthesedirectionvectorscanbeaveraged.Forrotationintheimageplane,wecanprojectthemodelfromtheestimatedrotationindepthandtaketheaverageimagerotationbetweenprojectedmodeledgesandthematchingimageedges.Estimatesfortranslationcanbemadebymatchingthecentersofgravityandstandarddeviationsfromthecentersofgravityfortheprojectedmodelfeaturesandimagefeatures.See
[21]foranexampleofcalculatinginitialestimatesforarecognitionproblem.
Ifthereareonlyaboutasmanymatchesasareneededtosolveforthedegreesoffreedom,thenitispossiblethatthereismorethanonelocalminimum.Thisproblemcanbeovercome
11