Fitting Parameterized Three-dimensional Models to Images
发布时间:2021-06-05
发布时间:2021-06-05
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
FittingParameterizedThree-DimensionalModelstoImages
DavidG.Lowe
ComputerScienceDepartment
UniversityofBritishColumbia
Vancouver,B.C.,CanadaV6T1Z4
Email:lowe@cs.ubc.ca
Abstract
Model-basedrecognitionandmotiontrackingdependsupontheabilitytosolveforprojectionandmodelparametersthatwillbest ta3-Dmodeltomatching2-Dimagefeatures.Thispaperextendscurrentmethodsofparametersolvingtohandleobjectswitharbitrarycurvedsurfacesandwithanynumberofinternalpa-rametersrepresentingarticulations,variabledimensions,orsurfacedeformations.Numericalstabilizationmethodsaredevelopedthattakeaccountofinherentinac-curaciesintheimagemeasurementsandallowusefulsolutionstobedeterminedevenwhentherearefewermatchesthanunknownparameters.TheLevenberg-Marquardtmethodisusedtoalwaysensureconvergenceofthesolution.Thesetechniquesallowmodel-basedvisiontobeusedforamuchwiderclassofprob-lemsthanwaspossiblewithpreviousmethods.Theirapplicationisdemonstratedfortrackingthemotionofcurved,parameterizedobjects.
ThispaperhasbeenpublishedinIEEETransactionsonPatternAnalysisandMachineIntelligence,13,5(May1991),pp.441–450.
1