Fitting Parameterized Three-dimensional Models to Images(14)

时间:2025-03-09

Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with

Sinceisadiagonalmatrix,isalsodiagonalbutwitheachelementonthediagonalsquared.Thismeansthatthecomputationalcostofthestabilizationistrivial,aswecan rst

andthensimplyaddsmallconstantstothediagonalthataretheinverseofthesquareform

ofthestandarddeviationofeachparameter.Ifisnon-zero,thenweaddthesameconstantsmultipliedbytotherighthandside.Iftherearefewerrowsintheoriginalsystemthanparameters,wecansimplyaddenoughzerorowstoformasquaresystemandaddtheconstantstothediagonalstostabilizeit.

5.3Forcingconvergence

Evenafterincorporatingthisstabilizationbasedonapriormodel,itispossiblethatthesystemwillfailtoconvergetoaminimumduetothefactthatthisisalinearapproximationofanon-linearsystem.Wecanforceconvergencebyaddingascalarparameterthatcanbeusedtoincreasetheweightofstabilizationwheneverdivergenceoccurs.Thenewformofthissystemis

Thissystemminimizes

ManypeopleinthevisioncommunitywillrecognizethisasanexampleofregularizationusingaTikhonov[33]stabilizingfunctional,ashasbeenappliedtomanyareasoflow-levelvision(Poggioetal.[28]).Inthiscase,theparametercontrolsthetrade-offbetweenapprox-

,andminimizingthedistanceofthesolutionfromitsoriginalimatingthenewdata,

.startingposition,priortonon-lineariteration,

Theuseofthisparametertoforceiterativeconvergenceforanon-linearsystemwas rststudiedbyLevenberg[17]andlaterreducedtoaspeci cnumericalprocedurebyMarquardt

[24].Theyrealizedthatastheparameterisincreased,thesolutionwouldincreasinglycor-respondtopuregradientdescentwithsmallerandsmallerstepsizes,alongwithitspropertiesofguaranteed(butslow)convergence.Fordecreasing,theprobleminsteadmovesovertoNewton’smethod,withitsfastquadraticconvergencenearthesolutionbutthepossibilityofdivergencewhenstartingtoofaraway.Therefore,Marquardtsuggestedthesimplesolutionofmonitoringtheresidualofeachsolutionandincreasingbyfactorsof10untiltheresidualde-creased;otherwise,isdecreasedbyafactorof10oneachiteration.Thisdoesnotguaranteeanyparticularrateofconvergenceandcan,ofcourse,convergetoalocalratherthanglobalminimum.However,ithasprovedhighlyeffectiveinpracticeandisoneofthemostwidelyusedmethodsfornon-linearleast-squares.

Marquardtdidnotassumeanypriorknowledgeoftheweightingmatrix,butinstead

.estimatedeachofitselementsfromtheeuclideannormofthecorrespondingcolumnof

allowsthealgorithmtoperformmuchbetterwhenacolumnInourcase,theavailablityof

ofisnearzero.Italsogivesthestabilizationamuchmorepredictablebehavior.Increasingthevalueofwillessentiallyfreezetheparametershavingtheloweststandarddeviationsand

14

…… 此处隐藏:724字,全部文档内容请下载后查看。喜欢就下载吧 ……
Fitting Parameterized Three-dimensional Models to Images(14).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219