Fitting Parameterized Three-dimensional Models to Images(14)
发布时间:2021-06-05
发布时间:2021-06-05
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
Sinceisadiagonalmatrix,isalsodiagonalbutwitheachelementonthediagonalsquared.Thismeansthatthecomputationalcostofthestabilizationistrivial,aswecan rst
andthensimplyaddsmallconstantstothediagonalthataretheinverseofthesquareform
ofthestandarddeviationofeachparameter.Ifisnon-zero,thenweaddthesameconstantsmultipliedbytotherighthandside.Iftherearefewerrowsintheoriginalsystemthanparameters,wecansimplyaddenoughzerorowstoformasquaresystemandaddtheconstantstothediagonalstostabilizeit.
5.3Forcingconvergence
Evenafterincorporatingthisstabilizationbasedonapriormodel,itispossiblethatthesystemwillfailtoconvergetoaminimumduetothefactthatthisisalinearapproximationofanon-linearsystem.Wecanforceconvergencebyaddingascalarparameterthatcanbeusedtoincreasetheweightofstabilizationwheneverdivergenceoccurs.Thenewformofthissystemis
Thissystemminimizes
ManypeopleinthevisioncommunitywillrecognizethisasanexampleofregularizationusingaTikhonov[33]stabilizingfunctional,ashasbeenappliedtomanyareasoflow-levelvision(Poggioetal.[28]).Inthiscase,theparametercontrolsthetrade-offbetweenapprox-
,andminimizingthedistanceofthesolutionfromitsoriginalimatingthenewdata,
.startingposition,priortonon-lineariteration,
Theuseofthisparametertoforceiterativeconvergenceforanon-linearsystemwas rststudiedbyLevenberg[17]andlaterreducedtoaspeci cnumericalprocedurebyMarquardt
[24].Theyrealizedthatastheparameterisincreased,thesolutionwouldincreasinglycor-respondtopuregradientdescentwithsmallerandsmallerstepsizes,alongwithitspropertiesofguaranteed(butslow)convergence.Fordecreasing,theprobleminsteadmovesovertoNewton’smethod,withitsfastquadraticconvergencenearthesolutionbutthepossibilityofdivergencewhenstartingtoofaraway.Therefore,Marquardtsuggestedthesimplesolutionofmonitoringtheresidualofeachsolutionandincreasingbyfactorsof10untiltheresidualde-creased;otherwise,isdecreasedbyafactorof10oneachiteration.Thisdoesnotguaranteeanyparticularrateofconvergenceandcan,ofcourse,convergetoalocalratherthanglobalminimum.However,ithasprovedhighlyeffectiveinpracticeandisoneofthemostwidelyusedmethodsfornon-linearleast-squares.
Marquardtdidnotassumeanypriorknowledgeoftheweightingmatrix,butinstead
.estimatedeachofitselementsfromtheeuclideannormofthecorrespondingcolumnof
allowsthealgorithmtoperformmuchbetterwhenacolumnInourcase,theavailablityof
ofisnearzero.Italsogivesthestabilizationamuchmorepredictablebehavior.Increasingthevalueofwillessentiallyfreezetheparametershavingtheloweststandarddeviationsand
14