Fitting Parameterized Three-dimensional Models to Images(2)

时间:2025-04-02

Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with

1Introduction

Model-basedvisionallowspriorknowledgeoftheshapeandappearanceofspeci cobjectstobeusedduringtheprocessofvisualinterpretation.Reliableidenti cationscanbemadebyidentifyingconsistentpartialmatchesbetweenthemodelsandfeaturesextractedfromtheimage,therebyallowingthesystemtomakeinferencesaboutthescenethatgobeyondwhatisexplicitlyavailablefromtheimage.Byprovidingthislinkbetweenperceptionandpriorknowledgeofthecomponentsofthescene,model-basedrecognitionisanessentialcomponentofmostpotentialapplicationsofvision.

Oneimportantcomponentofmodel-basedvisionistheabilitytosolveforthevaluesofallviewpointandmodelparametersthatwillbest tamodeltosomematchingimagefeatures.Thisisimportantbecauseitallowssometentativeinitialmatchestoconstrainthelocationsofotherfeaturesofthemodel,andtherebygeneratenewmatchesthatcanbeusedtoverifyorrejecttheinitialinterpretation.Thereliabilityofthisprocessandthe nalinterpretationcanbegreatlyimprovedbytakingaccountofallavailablequantitativeinformationtoconstraintheunknownparametersduringthematchingprocess.Inaddition,parameterdeterminationisnecessaryforidentifyingobjectsub-categories,forinterpretingimagesofarticulatedor exibleobjects,andforroboticinteractionwiththeobjects.

Inmostcases,itispossibletosolveforallunknownparametersfora3-Dmodelfrommatchestoasingle2-Dimage.However,insomecircumstances—suchaswhenboththesizeanddistanceofthemodelisunknown—theaccuracyofparameterdeterminationcanbesub-stantiallyimprovedbysimultaneously ttingthemodeltoimagestakenfrommorethanoneviewpoint.Themethodspresentedherecanbeusedineithersituation.

Thelocationsofprojectedmodelfeaturesinanimageareanon-linearfunctionoftheview-pointandmodelparameters.Therefore,thesolutionisbasedonNewton’smethodoflineariza-tionanditerationtoperformaleast-squaresminimization.Thisisaugmentedbyastabilizationmethodthatincorporatesapriormodeloftherangeofuncertaintyineachparameterandesti-matesofthestandarddeviationofeachimagemeasurement.Thisallowsusefulapproximateso-lutionstobeobtainedforproblemsthatwouldotherwisebeunderdeterminedorill-conditioned.Inaddition,theLevenberg-Marquardtmethodisusedtoalwaysforceconvergenceofthesolu-tiontoalocalminimum.Thesetechniqueshaveallbeenimplementedandtestedaspartofasystemformodel-basedmotiontracking,andtheyhavebeenfoundtobereliableandef cient.2Previousapproaches

AttemptstosolveforviewpointandmodelparametersdatebacktotheworkofRoberts[30].Althoughhissolutionmethodswerespecializedtocertainclassesofobjects,suchasrectangularblocks,Robertsclearlyunderstoodthevalueofquantitativeparameterdeterminationformakingvisionrobustagainstmissingandnoisydata.Unfortunately,therewerefewattemptstobuilduponthisworkformanyyearsfollowingitsinitialpublication.

In1980,theauthor[19]presentedageneraltechniqueforsolvingforviewpointandmodel

2

…… 此处隐藏:1012字,全部文档内容请下载后查看。喜欢就下载吧 ……
Fitting Parameterized Three-dimensional Models to Images(2).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219