Fitting Parameterized Three-dimensional Models to Images(12)
时间:2025-03-09
时间:2025-03-09
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
bystartingwithsomeextramatches(thesolutionadoptedintheauthor’sapplications),byattemptingtoconvergefromseveralstartingpositions,orbyusingananalyticmethodappliedtosubsetsofthematches(asinDhomeetal.[4])tocomputeacandidatesetofstartingpositions.Yetanotherapproachistoconstructaninverselookuptablethatmapsfeaturemeasurementsintoapproximateviewpointparameterestimates.SuchanapproachhasbeenusedbyThompsonandMundy[32]forverticesandbyGoad[7]forawiderangeofarbitrarymodelfeatures.5Stabilizingthesolution
Aslongastherearesigni cantlymoreconstraintsonthesolutionthanunknowns,Newton’smethodasdescribedabovewillusuallyconvergeinastablemannerfromawiderangeofstart-ingpositions.However,inbothrecognitionandmotiontrackingproblems,itisoftendesirabletobeginwithonlyafewofthemostreliablematchesavailableandtousethesetonarrowtherangeofviewpointsforlatermatches.Evenwhentherearemorematchesthanfreeparameters,itisoftenthecasethatsomeofthematchesareparallelorhaveotherrelationshipswhichleadtoanill-conditionedsolution.Theseproblemsarefurtherexacerbatedbyhavingmodelswithmanyinternalparameters.
5.1Specifyingapriormodel
Alloftheseproblemscanbesolvedbyintroducingpriorconstraintsonthedesiredsolutionthatspecifythedefaulttobeusedintheabsenceoffurtherdata.Inmanysituations,thedefaultso-lutionwillsimplybetosolveforzerocorrectionstothecurrentparameterestimates.However,forcertainmotiontrackingproblems,itispossibletopredictspeci c nalparameterestimatesbyextrapolatingfromvelocityandaccelerationmeasurements,whichinturnimplynon-zeropreferencesforparametervaluesinlateriterationsofnon-linearconvergence.
Anyofthesepriorconstraintsonthesolutioncanbeincorporatedbysimplyaddingrowstothelinearsystemstatingthevaluethatwewishtoassigneachparameter:
Theidentitymatrixaddsonerowforspecifyingthevalueofeachparameter,andspeci esthedesireddefaultvalueforparameter.
Theobviousproblemhereisthatthereisnospeci cationofthetrade-offsbetweenmeetingtheconstraintsfromthedataversusthoseofthepriormodel.Theappropriatesolutionistoweighteachrowofthematrixequationsothateachelementoftheright-handsidehasthesamestandarddeviation.Therefore,asweminimizetheerrorvector,eachconstraintwillcontributeinproportiontothenumberofstandarddeviationsfromitsexpectedvalue.
Wewillnormalizeeachrowofthesystemtounitstandarddeviation.Iftheimagemea-surementsareinpixels,thenleavingthesewithastandarddeviationof1isalreadyagood rstestimatefortheerrorinmeasuringthepositionofimagefeatures.Inourmatchingalgorithm,
12
…… 此处隐藏:696字,全部文档内容请下载后查看。喜欢就下载吧 ……