Fitting Parameterized Three-dimensional Models to Images(12)

时间:2025-03-09

Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with

bystartingwithsomeextramatches(thesolutionadoptedintheauthor’sapplications),byattemptingtoconvergefromseveralstartingpositions,orbyusingananalyticmethodappliedtosubsetsofthematches(asinDhomeetal.[4])tocomputeacandidatesetofstartingpositions.Yetanotherapproachistoconstructaninverselookuptablethatmapsfeaturemeasurementsintoapproximateviewpointparameterestimates.SuchanapproachhasbeenusedbyThompsonandMundy[32]forverticesandbyGoad[7]forawiderangeofarbitrarymodelfeatures.5Stabilizingthesolution

Aslongastherearesigni cantlymoreconstraintsonthesolutionthanunknowns,Newton’smethodasdescribedabovewillusuallyconvergeinastablemannerfromawiderangeofstart-ingpositions.However,inbothrecognitionandmotiontrackingproblems,itisoftendesirabletobeginwithonlyafewofthemostreliablematchesavailableandtousethesetonarrowtherangeofviewpointsforlatermatches.Evenwhentherearemorematchesthanfreeparameters,itisoftenthecasethatsomeofthematchesareparallelorhaveotherrelationshipswhichleadtoanill-conditionedsolution.Theseproblemsarefurtherexacerbatedbyhavingmodelswithmanyinternalparameters.

5.1Specifyingapriormodel

Alloftheseproblemscanbesolvedbyintroducingpriorconstraintsonthedesiredsolutionthatspecifythedefaulttobeusedintheabsenceoffurtherdata.Inmanysituations,thedefaultso-lutionwillsimplybetosolveforzerocorrectionstothecurrentparameterestimates.However,forcertainmotiontrackingproblems,itispossibletopredictspeci c nalparameterestimatesbyextrapolatingfromvelocityandaccelerationmeasurements,whichinturnimplynon-zeropreferencesforparametervaluesinlateriterationsofnon-linearconvergence.

Anyofthesepriorconstraintsonthesolutioncanbeincorporatedbysimplyaddingrowstothelinearsystemstatingthevaluethatwewishtoassigneachparameter:

Theidentitymatrixaddsonerowforspecifyingthevalueofeachparameter,andspeci esthedesireddefaultvalueforparameter.

Theobviousproblemhereisthatthereisnospeci cationofthetrade-offsbetweenmeetingtheconstraintsfromthedataversusthoseofthepriormodel.Theappropriatesolutionistoweighteachrowofthematrixequationsothateachelementoftheright-handsidehasthesamestandarddeviation.Therefore,asweminimizetheerrorvector,eachconstraintwillcontributeinproportiontothenumberofstandarddeviationsfromitsexpectedvalue.

Wewillnormalizeeachrowofthesystemtounitstandarddeviation.Iftheimagemea-surementsareinpixels,thenleavingthesewithastandarddeviationof1isalreadyagood rstestimatefortheerrorinmeasuringthepositionofimagefeatures.Inourmatchingalgorithm,

12

…… 此处隐藏:696字,全部文档内容请下载后查看。喜欢就下载吧 ……
Fitting Parameterized Three-dimensional Models to Images(12).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219