Fitting Parameterized Three-dimensional Models to Images(3)

时间:2025-03-09

Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with

parametersusingNewton’smethodfornonlinearleast-squaresminimization.Sincethattimethemethodhasbeenusedsuccessfullyinanumberofapplications,anditalsoprovidesthestartingpointfortheworkpresentedinthispaper.Theapplicationofthemethodtorobustmodel-basedrecognitionhasbeendescribedbyLowe[20,21,22],McIvor[26],andWorrall,Baker&Sullivan[34].Bray[2]hasappliedthemethodtomodel-basedmotiontrackingofrigidobjects.Ishiietal.[14]describetheapplicationofthisworktotheproblemoftrackingtheorientationandlocationofarobothandfromasingleviewofLEDtargetsmountedonthewrist.Theirpaperprovidesadetailedanalysisthatshowsgoodaccuracyandstability.Goldberg&Lowe[8]describetheapplicationandtestingofanumberofmoreadvancednumericalmethodsforthisproblem.

Inrecentyears,therehasbeenaconsiderableincreaseinthenumberofpublicationsonparametersolvingformodel-basedvision,withmostoftheworkaimedatsolvingforviewpointparametersofrigidobjects.Liuetal.[18]andKumar[15]haveexaminedalternativeiterativeapproachestosolvingfortheviewpointparametersbyseparatingthesolutionforrotationsfromthosefortranslations.However,Kumarshowsthatthisapproachleadstomuchworseparameterestimatesinthepresenceofnoisydata.Therefore,headoptsasimilarsimultaneousminimizationasisusedintheworkabove.AquitedifferentapproachbasedontheuseofeliminationmethodstoprovidetheinitialproblemformulationhasbeenproposedbyPonceandKriegman[29].ThisalsousesNewton’smethodforthe nalparameterdeterminationbasedonleast-squaresminimization.

Haralicketal.[11]haveexperimentedwithrobustmethodssuchasiterativereweightinginordertoallowforoutlierscausedbyincorrectmatches.However,theirresultsshowthatevenoneoutlieramong20correctmatchesleadstoalargeincreaseinexpectederrorfollowingreweighting.Thealternativethatisusedinthispaperistoprovideahigher-levelsearchprocessthatconsidersothersetsofmatcheswhenthe rstsetfailstoresultinanaccurate tofthemodel.

2.1Theproblemofmultiplesolutions

Muchworkhasbeenpublishedoncharacterizingtheminimumamountofdataneededtosolveforthesixviewpointparameters(assumingarigidobject)andonsolvingforeachofthemulti-plesolutionsthatcanoccurwhenonlythisminimumdataisavailable.FischlerandBolles[6]showthatuptofoursolutionswillbepresentfortheproblemofmatching3modelpointsto3imagepoints,andtheygiveaprocedureforidentifyingeachofthesesolutions.Asolutionforthecorresponding4-pointproblem,whichcanalsohavemultiplesolutionsundersomecir-cumstances,isgivenbyHoraudetal.[12].HuttenlocherandUllman[13]showthatthe3-pointproblemhasasimplesolutionfororthographicprojection,whichisasuf cientlycloseapprox-imationtoperspectiveprojectionforsomeapplications.Theyusetheterm“alignment”torefertothesolutionforviewpointparametersduringthemodel ttingprocess.Inthemostvaluabletechniqueformanypracticalapplications,Dhomeetal.[4]giveamethodfordeterminingallsolutionstotheproblemofmatching3modellinesto3imagelines.Theyshowthatthisispar-ticularlyusefulforgeneratingstartingpositionsfortheiterativetechniquesusedinthispaper

3

…… 此处隐藏:1172字,全部文档内容请下载后查看。喜欢就下载吧 ……
Fitting Parameterized Three-dimensional Models to Images(3).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219