Fitting Parameterized Three-dimensional Models to Images(16)
时间:2025-04-02
时间:2025-04-02
Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with
Figure4:Animagefromamotionsequenceofapersonusingahanddrill.
oftheprojectedsegmentswerechosenformatching.ThemodelparameterswerechangedtoproducethestartingparameterestimatesshowninFigure3(b).Inthis gure,theperpendicularerrorsbeingminimizedaredisplayedasgraybarsbetweentheprojectedmodelsegmentsandthematchingimagesegments.Figures3(c)and3(d)showtheoutputfollowingthe rsttwoiter-ationsofthestabilizedalgorithmpresentedabove.Thisfastrateofconvergencewithinacoupleofiterationsistypicaloverawiderangeofinitialparametervalues(uptoatleast60degreeer-rorsinrotationparameters).SeeWorrall,Baker&Sullivan[34]forasystematicexplorationofconvergenceoverawiderangeoferrors,evenpriortotheadditionofthestabilizationandLevenberg-Marquardtmethods.Infact,divergenceisrelativelyrare,soitisuncommonfortheLevenberg-Marquardtmethodtotakeeffect;however,itscomputationalcostisalsolow,soitisprobablyofpracticalvalue.
6.1Applicationtomotiontracking
Oneinitialapplicationofthesemethodshasbeentotheproblemofmodel-basedmotiontrack-ing.ADatacubeimageprocessorwasusedtoimplementMarr-Hildreth[25]edgedetectioninrealtimeon512by485pixelimages.Theimagecontainingtheseedgepointsistransferredto
16