2014年全国高考理科数学试题分类汇编4 函数(4)
发布时间:2021-06-11
发布时间:2021-06-11
e
当a≥g(x)在[0,1]上的最小值是g(1)=e-2a-b.
2
(2)设x0为f(x)在区间(0,1)内的一个零点,
则由f(0)=f(x0)=0可知,f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减. 则g(x)不可能恒为正,也不可能恒为负. 故g(x)在区间(0,x0)内存在零点x1. 同理g(x)在区间(x0,1)内存在零点x2. 故g(x)在区间(0,1)内至少有两个零点.
1
由(1)知,当a≤时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点;
2e
当a≥g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点,都不合题意.
21ea<.
22
此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增. 因此x1∈(0,ln(2a)],x2∈(ln(2a),1),必有 g(0)=1-b>0,g(1)=e-2a-b>0. 由f(1)=0得a+b=e-1<2,
则g(0)=a-e+2>0,g(1)=1-a>0, 解得e-2<a<1.
当e-2<a<1时,g(x)在区间[0,1]内有最小值g(ln(2a)). 若g(ln(2a))≥0,则g(x)≥0(x∈[0,1]),
从而f(x)在区间[0,1]内单调递增,这与f(0)=f(1)=0矛盾,所以g(ln(2a))<0. 又g(0)=a-e+2>0,g(1)=1-a>0.
故此时g(x)在(0,ln(2a))和(ln(2a),1)内各只有一个零点x1和x2.
由此可知f(x)在[0,x1]上单调递增,在(x1,x2)上单调递减,在[x2,1]上单调递增. 所以f(x1)>f(0)=0,f(x2)<f(1)=0, 故f(x)在(x1,x2)内有零点.
综上可知,a的取值范围是(e-2,1).
4 函数的奇偶性与周期性
x2+1,x>0,
7.、、[2014·福建卷] 已知函数f(x)= 则下列结论正确的是( )
cos x, x≤0,
A.f(x)是偶函数
B.f(x)是增函数 C.f(x)是周期函数
D.f(x)的值域为[-1,+∞)
7.D [解析] 由函数f(x)的解析式知,f(1)=2,f(-1)=cos(-1)=cos 1,f(1)≠f(-1),则f(x)不是偶函数;
当x>0时,令f(x)=x2+1,则f(x)在区间(0,+∞)上是增函数,且函数值f(x)>1;
当x≤0时,f(x)=cos x,则f(x)在区间(-∞,0]上不是单调函数,且函数值f(x)∈[-1,1];
∴函数f(x)不是单调函数,也不是周期函数,其值域为[-1,+∞).
下一篇:《如梦令》教案 (1)