2013年中考二模数学试卷及答案(白下区)(11)
时间:2026-01-15
时间:2026-01-15
(2)解法一:设小轿车离甲地的路程y2(km)与行驶时间x(h)的函数关系式是
y2=mx.
代入点(1.5,150),得150=1.5m.解得m=100.
所以,小轿车离甲地的路程y2(km)与行驶时间x(h)的函数关系式是y2=100x.
由(1)知,货车离甲地的路程y1(km)与行驶时间x(h)的函数关系式是y1=240-60x.
当y1=0时,代入y1=-60x+240,得x1=4. 当y2=300时,代入y2=100x,得x2=3.
答:小轿车先到达目的地. ······························································· 8分
解法二:根据图象,可得小轿车的速度为150÷1.5=100. 货车到达甲地用时240÷60=4(h). 小轿车到达乙地用时300÷100=3(h).
答:小轿车先到达目的地. ······························································· 8分
25.(本题8分)
解:(1)画图正确. ······························································································ 3分
(2)BC与⊙O相切.理由如下:
连接CO.∵∠A=∠B=30°,
∴∠COB=2∠A=60°.
∴∠COB+∠B=30°+60°=90°.
∴∠OCB=90°,即OC⊥BC. 又BC经过半径OC的外端点C,
∴BC与⊙O相切. ·················································································· 8分
26.(本题8分)
解:(1)可画出下面的反例: 图中,AB=CD,DA∥BC.
此时,虽有∠A=∠C,但△AOD与△COB不全等. ································ 4分
(2)答案不唯一,如OA=OC. 理由如下:
∵AB=CD,OA=OC,
∴AB-OA=CD-OC,即OB=OD. ∵∠AOD=∠COB,
∴△AOD≌△COB. ················································································ 8分
B
C
上一篇:传菜部主管岗位职责
下一篇:MOSFET单相全桥无源逆变电路