2007年考研数学(三)真题解析
发布时间:2021-06-08
发布时间:2021-06-08
2007年考研数学(三)真题解析
1….【分析】本题为等价无穷小的判定,利用定义或等价无穷小代换即可. 【详解】当x
0时,1
1
,1 12
2
1x, 2
故用排除法可得正确选项为(B).
事实上,lim
x 0
lim
lim 1,
x 0 x 0
或 ln(1 x) ln(1 x o(x) o o
所以应选(B)
【评注】本题为关于无穷小量比较的基本题型,利用等价无穷小代换可简化计算. 类似例题见《数学复习指南》(经济类)第一篇【例1.54】 【例1.55】.
2…….【分析】本题考查可导的极限定义及连续与可导的关系. 由于题设条件含有抽象函数,
本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数f(x)去进行判断,然后选择正确选项.
【详解】取f(x) |x|,则lim
x 0
f(x) f( x)
0,但f(x)在x 0不可导,故选(D).
x
事实上,
在(A),(B)两项中,因为分母的极限为0,所以分子的极限也必须为0,则可推得
f(0) 0.
lim在(C)中,
x 0
f(x)f(x) f(0)f(x)
lim 0,存在,则f(0) 0,f (0) lim
x 0x 0xx 0x
所以(C)项正确,故选(D)
【评注】对于题设条件含抽象函数或备选项为抽象函数形式结果以及数值型结果的选择题,用赋值法求解往往能收到奇效.
类似例题见文登强化班笔记《高等数学》第2讲【例2】,文登07考研模拟试题数学二第一套(2).
3…….【分析】本题实质上是求分段函数的定积分. 【详解】利用定积分的几何意义,可得
1111 13
F(3) 21 ,F(2) 22 ,
2222 28
F( 2)
20
0211
f(x)dx f(x)dx f(x)dx 12 .
2022
2
上一篇:九年级历史复习计划
下一篇:电线电缆生产用主要设备