视频中的行人检测(新)(14)
发布时间:2021-06-06
发布时间:2021-06-06
山东建筑大学数字图像处理课程设计
三、设计内容
3.1背景减法运动目标检测
背景差分算法的实质是:实时输入的场景图像与背景图像进行差分,可以较准确的分割出运动目标。但是背景差分算法也有其天然的缺陷,随着时间的推移,场景的光线、树叶的遮挡、或者运动物体滞留都会很大程度的破坏已经建立好的背景图像。为了解决这些问题,最好的方法便是使用背景建模和背景更新算法来弥补。前面已经讨论过相关问题,因此,本文假设背景处于理想情况下进行背景差分算法的研究。设(x, y)是二维数字图像的平面坐标,基于背景减法的二值化数学描述为:
Di x,y |Ii x,y -Bi x,y | (公式2-3) 1,Di T
Mi x,y =0,Di T (公式2-4)
Ii x,y 表示图像序列中当前帧的灰度图像,Bi x, y 表示当前帧背景的灰度图像,Mi x,y 表示相减后的二值化结果,T表示对应的相减后灰度图像的阈值,选取固定阈值T=15,基于背景减法的MATLAB仿真。
3.2 阈值的选取
分割阈值的选取虽看似简单,但直接影响目标的分割效果,阈值T增大,虽然可以一定量的减少环境对效果的影响,但同时也会将差分结果中变化不明显的区域作为前景被忽略掉;阈值T减小,效果却又恰恰相反。前面提到的相关算法中,阈值的选取都是采用的静态固定阈值。这种阈值的选取方法在实际运用中是不可取的,因为在视频监控应用中,监控者不可能随时对监控质量做出评估并相应的修改阈值。所以,研究人员提出了许多阈值的选取方法。但是到目前为止还不存在一种通用的方法,也不存在一个判断分割是否成功的客观标准。
阈值法可以分为全局阈值法和局部阈值法两种。全局阈值法是指在在整幅图像范围内用同一阈值来进行二值化处理的方法;局部阈值法是当图像中的敏感度
上一篇:拼音描红字帖打印版
下一篇:第十二章 劳动合同法