MULTIGRID IN H(div) AND H(curl)(6)
时间:2025-07-09
时间:2025-07-09
Abstract. We consider the solution of systems of linear algebraic equations which arise from the finite element discretization of variational problems posed in the Hilbert spaces H(div) and H(curl) in three dimensions. We show that if appropriate finite el
6DOUGLASN.ARNOLD,RICHARDS.FALK,ANDRAGNARWINTHER
su cientlysmooththattherequiredfunctionvaluesandmomentsexistintothesubspaces.Speci cally,ΠWhisastandardinterpolationoperatorandisde nedon
22continuousfunctions,andΠShistheL-projectionoperator,de nedonallLfunc-
1tions.AsthedomainforΠVh,wecanchooseH.Moreover,astandardargument
basedontheBramble–Hilbertlemmaandscalinggivestheerrorestimate(2.3) v ΠVhv ≤ch v 1,v∈H1.
Becauseofthedependenceonedgemoments,thesituationismorecomplicated
1fortheoperatorΠQ
h.ItisboundedonthespaceofHvector eldswhosecurl
belongstoLp,forany xedp∈(2,∞].ThisfollowsfromLemma4.7of[1]andtheSobolevembeddingtheorem.Inparticular,itisde nedforH1vector eldswhosecurlbelongstoVh.Moreoverwehave
(2.4) q ΠQ
hq ≤ch q 1,q∈H1suchthatcurlq∈Vh.
Toshowthis,wefollow[12].Firstconsiderthecasewherethemeshconsistsof .LetQ andV denotethecorrespondingspacesandΠ QonlytheunitsimplexT ,ingtheequivalenceofnormsinV
Qq ≤c( q 1+ curlq L∞)≤c q 1 Π
.ABramble–Hilbertargumentthengives )suchthatcurlq ∈H1(T ∈Vforallq Qq )suchthatcurlq wherenowonlytheH1 Π ≤c|q |1forq ∈H1(T ∈V q
seminormappearsontherighthandside.Ifwescalethisestimatetoageneral withFa ne,usingtheappropriatecontravarianttransformsimplexT=F 1T
→(DF) (q F),andaddupoverallthesimplicesinthemesh,weget(2.4).q
Theinterpolationoperatorsalsosatisfythecommutativityproperties
VcurlΠQ
h=Πhcurl,SdivΠVh=Πhdiv,QgradΠWh=Πhgrad
whenappliedtosu cientlysmoothvector elds.Thesewell-knownrelationsfollowfromthede nitionsoftheinterpolationoperatorsandthetheoremsofGreenandStokes.dInadditiontotheseinterpolationoperators,wealsode nePhtobetheorthog-conalprojectionontoVhwithrespecttotheinnerproductinH(div)andPhtobetheorthogonalprojectionontoQhwithrespecttotheinnerproductinH(curl).AkeypropertyrelatingthespacesWh,Qh,Vh,andSh,isthatthefollowingsequenceisexact:
0 →Wh/R →Qh →Vh →Sh →0,
i.e.,thattherangeofeachoftheoperatorsinthesequencecoincideswiththenullspaceofthefollowingoperator.Itfollowsthatifwede negradh:Sh→VhastheL2adjointofthemap div:Vh→Sh,andcurlh:Vh→QhastheL2adjointofcurl:Qh→Vh,thenwehavethetwoorthogonaldecompositions:
Vh=curlQh⊕gradhSh,Qh=curlhVh⊕gradWh.gradcurldiv
…… 此处隐藏:373字,全部文档内容请下载后查看。喜欢就下载吧 ……上一篇:第2课 指挥海龟画图形
下一篇:西方经济学01