MULTIGRID IN H(div) AND H(curl)(9)
时间:2025-07-09
时间:2025-07-09
Abstract. We consider the solution of systems of linear algebraic equations which arise from the finite element discretization of variational problems posed in the Hilbert spaces H(div) and H(curl) in three dimensions. We show that if appropriate finite el
MULTIGRIDINH(div)ANDH(curl)9
4.MultigridconvergenceinH(div)andH(curl).Weconsideranestedsequenceofquasi-uniformtetrahedralmeshesTj,1≤j≤J.Thesegiveriseto
cspacesWj,Qj,Vj,andSjandoperatorsΛdj:Vj→VjandΛJ:Qj→Qj.In
thissection,weuseTheorem3.2toobtainaconvergenceresultforthemultigridcV-cycleappliedtotheequationΛdJu=forΛJp=ginthespaceX=VJorQJ.FortheenclosingHilbertspaceYwetakeL2.Wenotethatproperties(3.1)and(3.2)onlyinvolvesubspacesattwolevels.LethdenotethemeshsizeofsomemeshTjandletHdenotethemeshsizeofthenextcoarsermeshTj 1.Tosimplifynotation,weshallwriteThandTHforTjandTj 1,andsimilarlyinothercaseswherethesubscriptsjandj 1arise.
Tode netheSchwarzsmoothers,wemustdecomposethespaceVhorQh.ForthespaceVh,threepossibledecompositions,basedonfacepatches,edgepatches,andvertexpatches,aregivenin(2.1).FromthepointofviewofimplementationofthecorrespondingSchwarzsmoother,theface-baseddecomposition,whichhasonlytwoelementsperpatch,ismoste cient,theedge-basedlesse cient,andthevertex-basedSchwarzsmoothertheleaste cient.However,asourtheorywillsuggestandnumericalcomputationsinanalogoussituationsreinforce[6],theface-basedSchwarzsmootherdoesnotleadtoane cientmultigridalgorithm.Belowweshallprovethatbothdecompositions ev(4.1)Vh=VhandVh=Vh,
e∈Ehv∈Vh
Theimplementationofthecorrespondingsmoother,whichmaybemoree cientthanthesmootherbasedonedgepatches,isdiscussedin[hiptmair-hdiv].Ouranalysisbelowappliestothissmootheraswell.
ForthespaceQhwemayuseeitherthedecomposition (4.3)Qh=Qvh,
v∈VhyieldSchwarzsmoothersthatsatisfytheconditionsofTheorem3.2withconstantsindependentofhandκ.In[10]Hiptmairgeneralizestothreedimensionadecom-positionusedintwodimensionsbyVassilevskiandWang[14],namely, f (4.2)Vh=Vh+curlQeh.f∈Fhe∈Eh
oroneduetoHiptmair[11],
(4.4)Qh=
e∈Eh
Itiseasytocheckthatsincenopointbelongstomorethansixofthe ehor
ffourofthe vhor h,allthesedecompositionssatisfythecondition(3.1)withβ
independentofh,ρ,andκ(βwillneverexceed10).Itthusonlyremainstoverifycondition(3.2),whichwestatefortheparticularcaseofthe rstsmootherin(4.1)andthesmootherin(4.3)inthefollowingtwotheorems.Theveri cationfortheothersmootherswillberemarkedonbelow.Forthesetheorems(only)werequiretheboundedre nementhypothesisH≤ch.(Inpractice,valuesofcaround2arecommon.) Qeh+v∈Vh vgradWh.
…… 此处隐藏:487字,全部文档内容请下载后查看。喜欢就下载吧 ……上一篇:第2课 指挥海龟画图形
下一篇:西方经济学01