MULTIGRID IN H(div) AND H(curl)(16)
时间:2025-07-09
时间:2025-07-09
Abstract. We consider the solution of systems of linear algebraic equations which arise from the finite element discretization of variational problems posed in the Hilbert spaces H(div) and H(curl) in three dimensions. We show that if appropriate finite el
16DOUGLASN.ARNOLD,RICHARDS.FALK,ANDRAGNARWINTHER
Weestimate φ usingthesamedualityargumentweusedtoestimate q intheproofofProposition4.3.SinceΠVHψ∈ZH(whichfollowsfromthecommutativitySrelationdivΠVH=ΠHdiv),andcurl(qh qH)⊥ZH,we nd
φ 2=(φ,curlψ)=(curlφ,ψ)=(curl[qh qH],ψ)
=(curl[qh qH],ψ ΠVHψ)≤cH curl(qh qH) ψ 1
≤cH curl(qh qH) φ .
Thisimpliesthat φ ≤cH curl(qh qH) ≤CH curlqh ,andsoweobtainthe rstestimateofthelemma.
Itremainstoprovethesecondestimate.Forthisestimate,too,wecannotsimplyusetheanalogueoftheargumentthatestablishedthesecondestimateofProposition4.3.Thistimetheproblemcanbetracedtothefailureofthecom-QmutativitypropertyΠZcurl=curlΠHH,eventhoughtheanalogousproperty
VΠSHdiv=divΠHisvalid.Insteadweshallderivetheestimatebyestablishingthe
followingthreefacts:
d(5.12)curlqh curlqH=(I PH)curlqh+gradHsH,forsomesH∈SH,
(5.13)
(5.14)d)curlqh , gradHsH ≤c (I PHd u PHu ≤cH curlhu ,u∈curlQh.
Thedesiredestimatefollowsbytakingu=curlqhin(5.14)andusing(5.12)and(5.13).
The rststatementfollowsfromtheequations
(curlqH,curlrH)=(curlqh,curlrH)=Λd(curlqh,curlrH)
dd=Λd(PHcurlqh,curlrH)=(PHcurlqh,curlrH),rH∈QH.
dcurlqhandToprove(5.13),wenotefromtheHelmholtzdecompositionofPHd,thatforanyvH∈VH,thede nitionofPH
d(divgradHsH,divvH)=(divPHcurlqh,divvH)
(5.15)dd=Λd(PHcurlqh,vH) (PHcurlqh,vH)
dd=(curlqh,vH) (PHcurlqh,vH)=([I PH]curlqh,vH).
Now
gradHsH 2= (divgradHsH,sH)≤ divgradHsH sH
≤c divgradHsH gradHsH ,
bythediscretePoincar´einequality(5.3).Thus gradHsH ≤c divgradHsH ,andtakingvH=gradHsHin(5.15),weget
d gradHsH 2≤c divgradHsH 2=c([I PH]curlqh,gradHsH)
d≤c (I PH)curlqh gradHsH ,
上一篇:第2课 指挥海龟画图形
下一篇:西方经济学01