MULTIGRID IN H(div) AND H(curl)(14)
时间:2025-07-09
时间:2025-07-09
Abstract. We consider the solution of systems of linear algebraic equations which arise from the finite element discretization of variational problems posed in the Hilbert spaces H(div) and H(curl) in three dimensions. We show that if appropriate finite el
14DOUGLASN.ARNOLD,RICHARDS.FALK,ANDRAGNARWINTHERProofofLemma5.1.De ne(v,s)from(5.1)withf=divvh.ThenvhandvHarethemixedapproximationstovinVhandVH,respectively.Applying(5.2),(2.3),and2-regularityfortheDirichletproblem,weobtain
v vH ≤ v ΠVHv ≤cH v 1≤cH divvh ,
and,similarly, v vh ≤ch divvh .The rstestimatethusfollowsfromthetriangleinequality.
Nextweprovethatforanyrh∈Sh,
(5.8) rh ΠSHrh ≤cH gradhrh .
Inparticular,wemaytakerh=divvhinthisestimate,toget
divvh divvH ≤cH gradhdivvh .
Toprove(5.8),wede neafunctionuwhichsatis es
divu=rh ΠSHrh,
Then
2SSS rh ΠSHrh =(divu,rh ΠHrh)=(divu,Πhrh ΠHrh)
VVS=([ΠSh ΠH]divu,rh)=(div[Πh ΠH]u,rh)
VVV=([ΠVh ΠH]u,gradhrh)≤( Πhu u + u ΠHu ) gradhrh u 1≤ rh ΠSHrh .
≤cH u 1 gradhrh ≤cH rh ΠSHrh gradhrh ,
whichimplies(5.8).
ProofofProposition4.3.Thepropositiondirectlygeneralizesthecorrespondingtwo-dimensionalresult,Lemma3.1of[2].Theproofoftheboundongradhshisentirelyanalogoustotheargumentin[2],buttheboundforqhrequirestheuseofamorecomplicateddualityargument.First,observethat
(5.9)d(curlqh,curlr)=Λd(u PHu,curlr)=0,r∈QH.
De ne(q,z)asin(5.4)withfreplacedbycurlqh.Thenqh∈Qhisthemixedapproximationtoq,andhence,by(5.6),(2.4),and(5.5),
(5.10) q qh ≤ q ΠQ
hq ≤ch q 1≤ch curlqh .
VSincedivz=0,divΠVHz=0,andsoΠHz∈curlQH.Wemaythereforeapply
(5.9),(2.3),and(5.5)toobtain
q 2=(q,curlz)=(curlq,z)=(curlqh,z)=(curlqh,z ΠVHz)
≤cH z 1 curlqh ≤cH q curlqh .
上一篇:第2课 指挥海龟画图形
下一篇:西方经济学01