MULTIGRID IN H(div) AND H(curl)(5)
时间:2025-07-09
时间:2025-07-09
Abstract. We consider the solution of systems of linear algebraic equations which arise from the finite element discretization of variational problems posed in the Hilbert spaces H(div) and H(curl) in three dimensions. We show that if appropriate finite el
MULTIGRIDINH(div)ANDH(curl)
5
Fig.1.DegreesoffreedomforthespacesWh,Qh,Vh,andShinthe
lowestordercasek=0.
andanalogouslywithQhreplacedbyWh,Vh,orSh.Then
Wh=
Qh=
(2.1)Vh=
Sh= vWh,v∈Vhv∈Vh QvhvVhvSh===v∈Vh
v∈Vh e∈Eh Qeh,eVheShe∈Eh e∈Eh ==f∈Fh f∈FhfSh fVh,=T∈Th TSh.
(2.2)ForeachofthesedecompositionsthereisacorrespondingestimateonthesumofthesquaresoftheL2normsofthesummands.Forexample,wecandecomposean arbitraryelementq∈Qhasq=e∈Ehqewithqe∈Qehsothattheestimate
e∈Eh qe 2≤c q 2
holdswithcdependingonlyontheshaperegularityofthemesh.Weremarkalso thatethedecompositionsnotstatedinfactdon’thold.Forexample,Wh=e∈EhWh.
Theproofofthesedecompositionsandthecorrespondingestimatesallfollowthesamelines.Forexample,toprovetheedge-baseddecompositionofQhandtheestimate(2.2),wenotethatthedegreesoffreedomofthespaceQhdeterminea canonicaldecompositionofanarbitraryelementq∈Qhasq=qξwherethesumrunsoverallthedegreesoffreedomofQh,andqξistheelementofQhwithalldegreesoffreedomotherthanξsetequaltozero.Astandardscalingargumentthenimpliesthat qξ ≤c q L2(suppqξ).Nowtoeachdegreeoffreedomξ,wemayassignanedgeeofthemeshsuchthatsuppqξ eh(foranedge-baseddegreeoffreedom,chooseetobethatedgeandforaface-ortetrahedron-baseddegreeoffreedom,chooseetobeanyedgecontainedinthefaceortetrahedron).Combiningthecorrespondingqξgivesthedesireddecomposition.
Thesedegreesoffreedomspeci edforthespacesWh,Qh,Vh,andShdeter-QVSmineinterpolationoperatorsΠW,Πhh,Πh,andΠhmappingfunctionswhichare
上一篇:第2课 指挥海龟画图形
下一篇:西方经济学01