MULTIGRID IN H(div) AND H(curl)(15)
时间:2025-07-09
时间:2025-07-09
Abstract. We consider the solution of systems of linear algebraic equations which arise from the finite element discretization of variational problems posed in the Hilbert spaces H(div) and H(curl) in three dimensions. We show that if appropriate finite el
MULTIGRIDINH(div)ANDH(curl)15
Hence, q ≤cH curlqh .Combiningthiswith(5.10),weobtain
d qh ≤cH curlqh ≤cH u PHu .
Thiscompletestheproofofthesecondestimateoftheproposition.
Sincethe rstestimateisvacuousifκ=0,weassumeκ>0.SinceΛdhmaps
1gradhShontoitself,wehavevh=(Λdgradhsh∈gradhSh.De ningvH∈h)
VHasinLemma5.1,wehave
2222 vh vH 2≤cH( divv +κ graddivv )dhhhΛh
≤cH2κ 2( vh 2+2κ2 divvh 2+κ4 gradhdivvh 2)
22 2=cH2κ 2 Λd gradhsh 2.hvh =cHκ
Hence,
dd gradhsh 2=Λd(gradhsh,vh)=Λd(u PHu,vh)=Λd(u PHu,vh vH)
dd≤ u PHu Λd vh vH Λd≤cHκ 1 u PHu Λd gradhsh .
WenowproveLemma5.2,fromwhichProposition4.4willfolloweasily.TheproofissubstantiallymoreinvolvedthanthatofLemma5.1,becausetheerrorestimate q qH ≤ q ΠQHq isnotvalid(re ectingthelackofthecommutativity
ZproperycurlΠQ
h=Πhcurl).
ProofofLemma5.2.Thelemmadoesnotinvolvetheparameterκ.Soasnottointroduceadditionalnotation,thenotationΛdisusedinthisprooftodenotedtheunweightedinnerproductinH(div)(κ=1),andPHisusedtodenotethecorrespondingorthogonalprojection.Z2SincecurlqH=ΠZHcurlqhwhereΠHistheLprojectionontoZH,weobvi-ouslyhave
(5.11) curlqH ≤c curlqh .
De ne(q,z)bytheboundaryvalueproblem(5.4)withfreplacedbycurlqh.SinceqhisthemixedapproximationofqinQhandcurlq∈Vh,weareabletouse(5.6)toestimateq qh.WhileqHisthemixedapproximationofqinQH,itisnottruethatcurlq∈VH,sowecannotestimateq qHinthesameway.Thereforewe
¯,z¯)by(5.4)withfreplacedbycurlqH.(Theanalogouscomplicationdidde ne(q
¯andψ=z z¯,weobtainnotariseintheproofofLemma5.1.)Settingφ=q q
curlψ=φ, ψ 1≤c φ ,
¯)=curl(qh qH),curlφ=curl(q q
φ 1≤c curlqh +c curlqH ≤c curlqh ,
¯ qH ≤cH curlqh , φ (qh qH) ≤ q qh + q
whereinthelastestimatewehaveused(5.6),(2.4),and(5.5)twice,andthen(5.11).
上一篇:第2课 指挥海龟画图形
下一篇:西方经济学01