MULTIGRID IN H(div) AND H(curl)(2)
时间:2025-07-09
时间:2025-07-09
Abstract. We consider the solution of systems of linear algebraic equations which arise from the finite element discretization of variational problems posed in the Hilbert spaces H(div) and H(curl) in three dimensions. We show that if appropriate finite el
2DOUGLASN.ARNOLD,RICHARDS.FALK,ANDRAGNARWINTHER
ThespacesH(div)andH(curl)arisenaturallyinmanyproblemsof uidme-chanics,solidmechanics,andelectromagnetism.Frequentlytheseapplicationsre-quireafastsolutionmethodforoneorbothoftheequations(1.1).Insomeappli-cations,essentialboundaryconditionsareimposed.Thatis,thebilinearformΛdis (div),thesubspaceofH(div)consistingofvector eldswhosenor-restrictedtoH (curl),malcomponentvanisheson ,orthebilinearformΛcisrestrictedtoH
thesubspaceofH(curl)consistingofvector eldswhosetangentialcomponentvanisheson .Althoughwewillnottreatthissituationexplicitlyhere,there-sultsandanalysiswegiveadapttothecaseofessentialboundaryconditionswithonlyminorandstraightforwardmodi cations.
In§7of[2],wediscussindetailtheapplicationoffastsolversfortheequationΛdhu=ftobothmixedandleastsquaresformulationsofsecondorderellipticboundaryvalueproblems,includingoneinwhichκ 1.Severalotherapplicationsarediscussedbrie yaswell.ApplicationsoffastsolversforΛchp=gariseinvariouscontextsinelectromagnetism.Forexample,insimpletime-discretizationsofMaxwell’sequations,thisoccurswithκproportionaltothetimestep.See[11]foradetaileddiscussion.SuchsolversalsohaveapplicationstosomeformulationsoftheNavier–Stokesequationsasdiscussedin[7]and[8].
Multigridmethodshavebeenestablishedasamongthemoste cientsolversfordiscretizedellipticproblemsandaconsiderabletheoryhasbeendevelopedtojustifytheiruse.See,e.g.,[4],[9],[15].Unfortunately,someofthesimplestandmostfrequentlyusedsmoothersforellipticproblemsdonotyielde ectivemulti-griditerationswhenappliedtotheproblemsconsideredhere(see,forexample,[6]).Thisfailurecanbetracedtoakeydi erencebetweentheoperatorsΛdandΛly,theeigenspaceassoci-atedtotheleasteigenvalueoftheformeroperatorscontainsmanyeigenfunctionswhichcannotberepresentedwellonacoarsemesh(whileloweigenvalueeigenfunc-tionsforstandardellipticoperatorsarealwaysslowlyvarying).ThisisbecausetheoperatorΛdreducestotheidentitywhenappliedtosolenoidalvector elds,althoughitbehaveslikeasecondorderellipticoperatorwhenappliedtoirrota-tionalvector elds.ExactlythereverseholdsforΛc.ItisthereforenotsurprisingthattheHelmholtzdecompositionofanarbitraryvector eldintoirrotationalandsolenoidalcomponentsplaysanimportantroleintheunderstandingandanalysisoftheseproblems.Inparticular,wemakesubstantialuseofdiscreteversionsoftheHelmholtzdecompositioninouranalysisofmultigridmethods.
ThemainresultofthispaperisaproofthatthestandardV-cyclemultigridal-gorithmisane ectivesolverorpreconditionerforproblemsinvolvingtheoperatorscΛdhorΛhinthreedimensionsif(1)appropriate niteelementsubspacesofH(div)andH(curl)aretaken,and(2)appropriatesmoothersareused.Moreprecisely,weshowthatifwetakeVhtobetheRaviart–Thomas–Nedelecspaceofanyorderwithrespecttoatetrahedralmeshofsizeh,andifΘdhistheapproximateinverseofΛdhde nedbytheV-cyclealgorithmusinganyofseveraladditiveormultiplica-
dtiveSchwarzsmoothers,thenI ΘdhΛhisapositivede nitecontraction,whose
normisboundedawayfrom1uniformlyinthemeshsizeh,thenumberofmeshlevels,andtheparametersρ,κ∈(0,∞).Ofcourse,thisimpliesthatΘdhisagood
dpreconditioneraswell:theconditionnumberofΘdhΛhisboundedindependently
…… 此处隐藏:1362字,全部文档内容请下载后查看。喜欢就下载吧 ……上一篇:第2课 指挥海龟画图形
下一篇:西方经济学01