MULTIGRID IN H(div) AND H(curl)(4)
时间:2025-07-09
时间:2025-07-09
Abstract. We consider the solution of systems of linear algebraic equations which arise from the finite element discretization of variational problems posed in the Hilbert spaces H(div) and H(curl) in three dimensions. We show that if appropriate finite el
4DOUGLASN.ARNOLD,RICHARDS.FALK,ANDRAGNARWINTHER
applytheseresulttoobtaintheconvergenceofthestandardmultigridV-cycleforctheoperatorsΛdhandΛhusingappropriatelyde nedadditiveandmultiplicativeSchwarzsmoothers.Theproofhingesoncertaintwo-levelerrorestimatesformixedmethodsbasedontheRaviart–Thomas–NedelecandNedelecedgespaces.Theseestimatesarestatedandprovedin§5.
2.Finiteelementdiscretization.Wesupposethat isaboundedandconvexpolyhedroninR3andThameshof consistingofclosedtetrahedra.Weassumethatthemeshisshaperegularandquasi-uniform.Moreprecisely,theconstantsthatappearintheestimatesbelowmaydependontheshaperegularityconstant(themaximumratioofthediameterofanelementtothediameterofthelargestballcontainedintheelement)andthequasi-uniformityconstant(themaximumratioofthelargesttothesmallestelementdiameter)ofthemesh,butareotherwisemesh-independent.WedenotebyVh,Eh,andFhthesetsofvertices,edges,andfacesofthemesh,respectively.Forν∈Vh∪Eh∪Fh∪Thwede ne νννTh={T∈Th|ν T}, h=interior(Th).
Thus νhisthesubdomainof formedbythepatchofelementsmeetingν,andνistherestrictionofthemeshThto νThh.
Fixanintegerk≥0.Wethenrecallthefollowingspaces:
Wh:
Qh:
Vh:
Sh:continuouspiecewisepolynomialsofdegreeatmostk+1,theNedelecedgediscretizationofH(curl)ofindexk,theRaviart–Thomas–NedelecdiscretizationofH(div)ofindexk,arbitrarypiecewisepolynomialsofdegreeatmostk.
Tode nethesespaces,wespecifythecorrespondingpolynomialspacesusedoneachelementandthecorrespondingsetsofdegreesoffreedom.RestrictedtoatetrahedronT,theelementsofWhandShare,ofcourse,arbitraryelementsofPk+1(T)andPk(T),respectively,wherePk(T)denotesthespaceofpolynomialsofdegreeatmostkrestrictedtoT.TherestrictionsoftheelementsofVharefunctionsoftheformp(x)+r(x)xwithp∈Pk(T)andr∈Pk(T).TheelementsofQharefunctionsoftheformp(x)+r(x)withp∈Pk(T)andr∈Pk+1(T)suchthatr·x≡0.Thedegreesoffreedomforu∈Vhareoftwosorts.First,themomentsofu·noforderatmostkoneachfacef(morepreciselythefunctionalsthatassociatetouitsinnerproductinL2(f)witheachelementofabasisforPk(f));andsecond,themomentsofuofdegreek 1oneachtetrahedron.Thedegreesoffreedomofq∈Qhare(1)themomentsofq·soforderatmostkoneachedge,(2)themomentsofq×noforderatmostk 1oneachface,and(3)themomentsofqoforderatmostk 2oneachtetrahedron.ForShweuseasdegreesoffreedomthetetrahedralmomentsoforderatmostk.ForWh,weuse
(1)thevaluesatthevertices,(2)theedgemomentsoforderatmostk 1,(3)thefacemomentsoforderatmostk 2,and(4)thetetrahedralmomentsoforderatmostk 3.
Wenowconsiderthedecompositionofthesespacesassumsofspacessupportedinsmallpatchesofelements.De ne
¯νQνh={r∈Qh:suppr h},ν∈Vh∪Eh∪Fh∪Th,
…… 此处隐藏:795字,全部文档内容请下载后查看。喜欢就下载吧 ……上一篇:第2课 指挥海龟画图形
下一篇:西方经济学01