2013年高考理科数学全国新课标卷2试题与答案wo(9)

发布时间:2021-06-06

于是f(x)=e-ln(x+1),定义域为(-1,+∞),f′(x)=e 函数f′(x)=e

x

xx

1. x 1

1

在(-1,+∞)单调递增,且f′(0)=0. x 1

因此当x∈(-1,0)时,f′(x)<0; 当x∈(0,+∞)时,f′(x)>0.

所以f(x)在(-1,0)单调递减,在(0,+∞)单调递增.

(2)当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时,f(x)>0. 当m=2时,函数f′(x)=e

x

1

在(-2,+∞)单调递增. x 2

又f′(-1)<0,f′(0)>0,

故f′(x)=0在(-2,+∞)有唯一实根x0,且x0∈(-1,0). 当x∈(-2,x0)时,f′(x)<0;

当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值. 由f′(x0)=0得e0=

x

1

,ln(x0+2)=-x0, x0 2

x0 1 21

故f(x)≥f(x0)=+x0=>0.

x0 2x0 2

综上,当m≤2时,f(x)>0.

请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一题计分,做答时请写清题号. 22.

解:(1)因为CD为△ABC外接圆的切线, 所以∠DCB=∠A,由题设知

BCDC

, FAEA

故△CDB∽△AEF,所以∠DBC=∠EFA. 因为B,E,F,C四点共圆, 所以∠CFE=∠DBC, 故∠EFA=∠CFE=90°.

所以∠CBA=90°,因此CA是△ABC外接圆的直径.

2

(2)连结CE,因为∠CBE=90°,所以过B,E,F,C四点的圆的直径为CE,由DB=BE,有CE=DC,又BC

22222

=DB·BA=2DB,所以CA=4DB+BC=6DB.

而DC=DB·DA=3DB,故过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值为23.

解:(1)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α), 因此M(cos α+cos 2α,sin α+sin 2α).

2

2

1. 2

M的轨迹的参数方程为

x cos cos2 ,

(α为参数,0<α<2π).

y sin sin2

(2)M点到坐标原点的距离

d <α<2π).

当α=π时,d=0,故M的轨迹过坐标原点.

24.

2013年高考理科数学全国新课标卷2试题与答案wo(9).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219