2014高考数学百题精练分项解析6(4)
时间:2026-01-16
时间:2026-01-16
(1)证明:∵
an 1
=q, an
∴
bn 1a1
n 为常数,则{bn}是等比数列. bnan 1q
(2)【解析】Sn=a1+a2+ +an
a1(1 qn)qn 1=, 3
1 qq(q 1)
Sn′=b1+b2+ +bn
11(1 n)aq4(qn 1)q=, n
1q(q 1)1 q
当Sn>Sn′时,
qn 1q4(qn 1)
.
q3(q 1)qn(q 1)
又q>1,则q-1>0,q-1>0,
n
1q4n7∴3 n,即q>q, qq
∴n>7,即n>7(n∈N)时,Sn>Sn′.
12.已知数列{an}:a1,a2,a3, ,an, ,构造一个新数列:a1,(a2-a1),(a3-a2), ,(an-an-1), 此数列是首项为1,公比为
*
1
的等比数列. 3
(1)求数列{an}的通项;
(2)求数列{an}的前n项和Sn. 【解析】(1)由已知得an-an-1=(
1n-1
)(n≥2),a=1, 3
an=a1+(a2-a1)+(a3-a2)+ +(an-an-1)
11 ()n
3 3[1-(1)n]. =
1231 3
(2)Sn=a1+a2+a3+ +an
3n31121n
-[+()+ +()] 223333n31n=-[1-()] 2436n 331= ×()n.
443
=