【强烈推荐】高一数学必修1各章知识点总结[1](4)
时间:2025-07-07
时间:2025-07-07
很好啊!
121212D上是增函数.区间称为y=f(x)的单调增区间.
如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间y=f(x)的单调减区间.
注意:函数的单调性是函数的局部性质; (2) 图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法:
1 任取x1,x2∈D,且x1<x2; ○
2 作差f(x1)-f(x2); ○
3 变形(通常是因式分解和配方); ○
4 定号(即判断差f(x1)-f(x2)的正负); ○
5 下结论(指出函数f(x)在给定的区间D上的单调性). ○
(B)图象法(从图象上看升降) (C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质) (1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤:
1首先确定函数的定义域,并判断其是否关于原点对称; ○
2确定f(-x)与f(x)的关系; ○
3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是○
偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有: 1) 凑配法 2) 待定系数法 3) 换元法 4) 消参法
上一篇:简易型主备用电源切换锁定装置
下一篇:第5章 锁存器和触发器