Meta-classifier approach to reliable text classification(8)

时间:2026-01-21

A problem with automatic classifiers is that there is no way to know if a particular classification is just a guess or a certain answer. Reliable classification is the task of predicting whether a certain instance is correctly classified or not, i.e., a cl

1.2.RELATEDWORK

i.e.,theclassi cationoftheinstanceisclassi edaseitherreliableorunreliable.

Whentheclassi cationisclassi edasreliable,itiscomparabletosaying“I

know”,andtheinstanceiscorrectlyclassi ed.Whentheclassi cationisclassi-

edasunreliable,itiscomparabletosaying“Idonotknow”,andtheinstance

isnotclassi ed.Solvingthetaskmeansthatallclassi cationsarecorrectand

theclassi erachievesanaccuracyof100%onthe“Iknow”instances.

Thereliabilityofaclassi cationcanbede nedinseveralways.Weadopt

thede nitionofKukarandKononenko[2002].Theyde nethereliabilityofa

classi cationastheprobabilitythattheclassi cationiscorrect.

Reliableclassi cationhastwoimportantapplicationareas:real-worldap-

plicationsandensemblesofclassi ers.Reliableclassi cationcanbeusedin

real-world,safety-criticaldomains,becauseitreducestheriskofmisclassi ca-

tion.Whenunreliableclassi cationsarediscarded,thecoverage(percentageof

recordsthatcanbeclassi ed)oftheclassi erdiminishes,butatthesametime

itsaccuracy(percentageofcorrectlyclassi edrecords)increases.

Reliableclassi cationisalreadybeingusedinanothercontextaswell,namely

inensemblesofclassi ers.Ensemblesclassifyaninstancebycombiningthe

classi cationsofmultipleclassi ers.The nalclassi cationcanbeobtainedin

severalways,e.g.,by(unanimous)votingoftheclassi ers.Reliableclassi ca-

tioncanbeusedtosifttheclassi cationsoftheclassi ers.Onlytheclassi ers

thatmakeareliableclassi cationwillbeusedtomakethe nalclassi cation

biningensemblesofclassi erswithreliableclassi cation

cansubstantiallyincreaseaccuracy[Seewald,2003,Ting,1996].

1.2RelatedWork

Fourdi erentapproachestoreliableclassi cationthathavebeendevelopedin

thelasttenyearsarediscussedinthissection:theBayesianframework,the

statisticalframeworks2,version-spacesupport-vectormachines,andthemeta-

classi erapproach.

1.2.1BayesianFramework

Classi ersintheBayesianframeworkusuallyproduceclassi cationsintheform

ofposteriorprobabilitydistributionsoverallpossibleclasses.Thesimplest

approachtoreliableclassi cationistousetheposteriorprobabilityofasingle

classi cationasameasureforreliability[Ting,1996].However,itisshown

thatposteriorprobabilitiesofclassi erslikena¨ veBayesarepoormeasuresfor

reliability,sincetheyarebasedonincorrectpriorassumptions[Melluishetal.,

2001,Delanyetal.,2004].Thus,theBayesianframeworkcanbemisleadingfor

reliableclassi cation,andisthereforeconsideredinappropriateforourpurposes.

1.2.2StatisticalFrameworks

Severalapproachestoreliableclassi cationarebasedonthealgorithmictheory

ofrandomness[Vovketal.,1999].Sincethereisnocomputable,universaltest

outputoftheclassi ersintheBayesianframeworkandthestatisticalframeworksis

areliabilityestimation,ratherthanareliableclassi cation.Byusingthresholds,reliability

estimationscaneasilybeconvertedtoreliableclassi cations.Whenthereliabilityestimation

isaboveacertaintresholdtheclassi cationisconsideredreliable.2The

2

…… 此处隐藏:1104字,全部文档内容请下载后查看。喜欢就下载吧 ……
Meta-classifier approach to reliable text classification(8).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:4.9 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:19元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219