Meta-classifier approach to reliable text classification(10)

时间:2026-01-21

A problem with automatic classifiers is that there is no way to know if a particular classification is just a guess or a certain answer. Reliable classification is the task of predicting whether a certain instance is correctly classified or not, i.e., a cl

1.3.PROBLEMSTATEMENTANDRESEARCHQUESTIONS

1.2.4Meta-Classi erApproach

Themeta-classi erapproachtakesadi erentlinetoreliableclassi cation.

Givenabaseclassi er,theapproachistolearnameta-classi erthatpredicts

thecorrectnessofeachinstanceclassi cationofthebaseclassi er.Thebase

classi erplusthemetaclassi erformonecombinedclassi er.Theclassi cation

ruleofthecombinedclassi eristoassignaclasspredictedbythebaseclassi er

toaninstanceifthemeta-classi erclassi esthebaseclassi cationasReliable,

otherwisetheinstanceclassi cationisrejected[SeewaldandF¨urnkranz,2001].

Thecrucialstepforthemeta-classi erapproachisthegenerationofthe

metadatathatisusedtotrainthemeta-classi er.Themetadataarerepresented

byfourdi erentmetadatarepresentations.Allmetadatarepresentationshave

thesamebinarymetaclassattribute.Themetaclassofaninstanceindicates

thereliabilityofthebaseclassi cation.Iftheinstanceisclassi edcorrectly

bythebaseclassi erthemetaclassisReliable,otherwisethemetaclassis

Unreliable.Belowwelistfourmetadatarepresentations.

Originalinstancesrepresentation.Allattributesinthemetainstance,

excepttheclassattribute,arethesameasintheoriginalinstances.

Probabilitydistributionrepresentation.Ametainstancecontainsthepos-

teriorprobabilitiesforallclassesasgivenbythebaseclassi er.

Basicstatisticsrepresentation.Attributesofthemetainstancearedif-

ferentcharacteristicsofthebaseclassi cation,likethebaseclassandthe

posteriorprobabilityofthebaseclass.

Nearestneighbourdistancesrepresentation.Thisrepresentationcanonly

beusedincombinationwithanearestneighbourbaseclassi er.Attributes

ofthemetainstancearecalculateddistancesbetweennearest(un)like

neighboursofatargetinstance[CheethamandPrice,2004].

Ameta-classi ercanbetrainedondi erentclasslevels.Aglobalmeta-

classi erapproachlearnsonemeta-classi erforallclasses.Alocalmeta-

classi erapproachlearnsonemeta-classi erforeachbaseclass.Eachlocal

meta-classi erclassi esonlymetainstanceswithoneparticularbaseclass.

The rstapplicationsofmeta-classi ersareinthecontextofensembles.

Theestimatedreliabilityofaclassi cationisusedtochoosetheclassi er(s)

thatwillclassifytheinstance[SeewaldandF¨urnkranz,2001].Inthese rst

meta-classi erstheoriginalinstancesrepresentationisusedasmetadatarepre-

sentation.InalaterversionofSeewald[2003],alsotheprobabilitydistribution

representationisused.Real-worldapplicationsinwhichthemeta-classi erap-

proachisusedincludeautomatictextclassi cation[Smirnovetal.,2003a]and

spam- ltering[Delanyetal.,2004]edtheprobabilitydis-

tributionmetadatarepresentation,edthenearestneighbour

distancesrepresentation.

Themeta-classi erapproachisdiscussedindetailinthethirdchapter.

1.3ProblemStatementandResearchQuestions

Inthisthesiswelookforanapproachtoreliableclassi cationthatcanbeused

inreal-worldpracticalapplications,i.e.,welookforanapproachthatissta-

4

…… 此处隐藏:1051字,全部文档内容请下载后查看。喜欢就下载吧 ……
Meta-classifier approach to reliable text classification(10).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:4.9 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:19元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219