Meta-classifier approach to reliable text classification(15)

时间:2026-01-21

A problem with automatic classifiers is that there is no way to know if a particular classification is just a guess or a certain answer. Reliable classification is the task of predicting whether a certain instance is correctly classified or not, i.e., a cl

2.3.DATAPREPARATION

section.

Thetextclassi cationtasksoftheCBSdi erfromacommontextclassi-

cationtaskintwoaspects.Firstly,thenumberofclassesisverylarge.The

Education1datasethasapproximately6,000classes,theprofessiondatasets

havealmost1,600classes.Secondly,thesizeoftheinstancesissmaller.While

mostclassi cationtasksconsiderwholedocuments,inthesetasksaninstance

consistsofonlyafewwords.Theinstancesdonotcontaincompletephrases.

Thesetwocharacteristicshaveconsiderableconsequencesontheperformance

ande ciencyofthetextclassi cationalgorithms.

2.3DataPreparation

Besidessamplingothertechniquesareusedtofurthereasethecomputational

complexity.Inthefollowingsubsectionstheselectionofinformative eldsand

di erentfeaturereductiontechniquesisdiscussed.

2.3.1SelectionofInformativeFields

RecordsintheCBSdatasetsconsistofmultiple eldsthatmightnotallbe

informative.Oneofthetasksinthepreviousresearchconsistedofassessingthe

contributionofthetext eldstotheclassi cationperformance.Inturneach

text eldoftheProfession1datasetwasleftouttodeterminethee ectonthe

accuracyofthetextclassi ers.Theconclusionofthistaskwasthatonlytwo

text eldsarerequiredfortheclassi cationofprofessions.Thesetext elds

containtheprofessionandthedailyactivitiesofanindividual[Smirnovetal.,

2003a].Weusethesametwotext eldstoclassifytherecordsintheProfession2

dataset,astheProfession2datasetcontainsthesame eldsastheProfession1

dataset.

Toidentifywhich eldsareinformativeintheeducationdatasets,eachtext

eldwas,alsointurn,leftouttodeterminethee ectontheaccuracy.Itturned

outthatleavingoutcertaintext eldsdidnotleadtoasigni cantimprovement

inclassi cationaccuracy.Hencealltext eldsareusedforclassi cationof

theEducation1andEducation2dataset.Anexplanationforthisresultisthat

onlyafew eldsare lledforeachrecordintheeducationdatasets,most elds

areemptyforthemajorityofrecords.Fieldscanbeemptybecausetheyare

irrelevantorunknownforacertainindividual.

2.3.2Feature-Reduction

Amajorproblemintextcategorizationisthehighdimensionalityofthefeature

space.Inourcasethefeaturespaceconsistsofalluniquewordsthatoccurin

thedatasets.Forexample,inasampleof20,000records,around15,000unique

wordsarepresent.Aninstanceisrepresentedbyallwordsthatoccurinthe

informative eldsofthetextrecord.Featurereductioncannotonlyreducetime

andspacecomplexity,butalsotheclassi cationperformancecanbeincreasedby

removingirrelevantanduninformativefeatures.Wewillusefeature-reduction

basedondocument-frequency,removalofstopwordsandstemmingtoreduce

thenumberoffeatures.

9

…… 此处隐藏:740字,全部文档内容请下载后查看。喜欢就下载吧 ……
Meta-classifier approach to reliable text classification(15).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:4.9 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:19元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219