Meta-classifier approach to reliable text classification(19)

时间:2026-01-21

A problem with automatic classifiers is that there is no way to know if a particular classification is just a guess or a certain answer. Reliable classification is the task of predicting whether a certain instance is correctly classified or not, i.e., a cl

3.2.CLASSIFICATIONALGORITHMS

Charactern-grams.Featuresareformedbyallsequencesofncharacters

inatext.Acommonvaluefornis3.Thecharactern-gramrepresentation

wasestablishedquitesomeyearsago[Shannon,1951].Anadvantageof

thisrepresentationisthatitcopesbetterwithspellingmistakes.

Besidesthefeatures,alsothefeatureweightshavetobedetermined.When

afeatureoccursinacertaindocument,ameasurehastodeterminethevalue

ofthisfeatureforthedocument.Someearlyna¨ veBayesapproachesusea

binary-valuedvectorrepresentation[RobertsonandSparck-Jones,1976].The

featurevalueequals1ifthefeatureoccursinthedocument,and0otherwise.

Informationinherentinthefrequenciesoffeaturesislostwhenonlytheabsence

orpresenceoffeaturesisconsidered.Thereforenewapproachesthattakeinto

accountfrequencyoffeaturesinadocumenthavebeendeveloped[Lewis,1998].

Themoststraightforwardadaptationistoconsidertheweightofafeatureequal

tothenumberofoccurrencesofthefeatureinthedocument.Thisweighting

functionisreferredtoastermfrequency(tf)[Lewis,1992].Thetffunction

encodestheintuitionthatthemoreoftenafeatureoccursinadocumentthe

moreitisrepresentativeofitscontent.Thesecondpopularweightingfunction

isthetfidfweightingfunction.Itistheproductofthetermfrequencyandthe

inversedocumentfrequency(idf).Thedocumentfrequency(df)ofafeature

isthenumberofdocumentsinthedatasetinwhichthefeatureoccursatleast

once.Theinversedocumentfrequencycanbecalculatedfromthedocument

frequencyasfollows:

idf(fi)=log|N|

i,where

|N|isthetotalnumberofdocumentsinthedataset,anddf(fi)isthedocument

frequencyoffeature(fi).Theidffunctionencodestheintuitionthatthemore

documentsafeatureoccursin,thelessdiscriminatingitis[Sebastiani,2002,

Smirnovetal.,2003b].Variationsonthetfidfweightingfunctioncanbecre-

atedthroughapplyingdi erentlogarithms,normalizations,andothercorrection

factors.

Inthisresearchweusethefollowingtextrepresentation.Toconvertatext

documentintoaninstancesuitableforclassi cationthevectorofallwords

thatoccurinthedatasetisthefeaturespace.PreviousCBSresearchshows

thatwordsworkwellasfeaturesfortheProfession1dataset,thereforeinthis

researchweusewordsasfeatures[Smirnovetal.,2003a].Thefeatureweightsof

theinstancesarecomputedbyatforatfidfweightingfunction.Weonlyuse

theweightingfunctionsthattakeintoaccountfrequenciesoffeaturesinorder

nottoloseinformationinherentinthefrequenciesoffeatures.

3.2Classi cationAlgorithms

Whenthetextofadocumentistransformedintoacompactrepresentation,in

principleanymachine-learningalgorithmcanbeapplied.Somespecialtextclas-

si cationalgorithmsthatincorporatefeaturede nitionsandweightingfunctions

havebeenproposed,forexampletheRocchioclassi er[Rocchio,1971].Theclas-

si cationalgorithmsthatareexaminedinthisresearch,i.e.,na¨ veBayesand

nearestneighbour,canuseeitherthetforthetfidfweightingfunction.

13

…… 此处隐藏:1007字,全部文档内容请下载后查看。喜欢就下载吧 ……
Meta-classifier approach to reliable text classification(19).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:4.9 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:19元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219