Meta-classifier approach to reliable text classification(20)

时间:2026-01-21

A problem with automatic classifiers is that there is no way to know if a particular classification is just a guess or a certain answer. Reliable classification is the task of predicting whether a certain instance is correctly classified or not, i.e., a cl

3.2.CLASSIFICATIONALGORITHMS

Inthisresearchwelookforpracticalsolutionsthathavesmallspaceand

timecomplexity.Weonlyconsiderclassi cationalgorithmsthatmeetthese

requirements,e.g.,supportvectormachinesarenotconsideredalthoughitisa

promisingtextclassi cationtechnique[Joachims,1998].Inthefollowingthree

subsectionsthena¨ veBayesalgorithm,thenearestneighbouralgorithmanda

hierarchicalapproachtotextclassi cationarediscussed.

3.2.1Na¨ veBayes

Thena¨ veBayesclassi erassumesthatallattributesaremutuallyindependent.

Thereforetheparametersforeachattributecanbelearnedseparatelyandthis

simpli esthetaskconsiderably.Especiallyintextclassi cationtasksthattypi-

callyhavealargenumberofattributesthisisbene cial.Duringtrainingofthe

na¨ veBayesclassi er,thepriorprobabilitiesoftheclasses,andtheprobabili-

tiesofobservingattributevaluesgiventheclass,areestimatedbasedontheir

frequenciesoverthetrainingdata.Anewinstanceisclassi edbyusingBayes

theoremtoidentifythemostprobableclass[Mitchell,1997].

3.2.2NearestNeighbour

Thenearestneighbourclassi erdoesnotbuildanexplicit,declarativerepresen-

tationoftheclasses,butsimplystoresallthetraininginstances.Toclassifya

newinstanceitreliesontheclassvaluesattachedtothetraininginstancesthat

aresimilartothenewinstance.Theknearesttraininginstancestakeavote

tosettleontheclassvaluewhentheclassisnominal.Themaindrawbackof

thisapproachisitsine ciencyatclassi cationtime.Toclassifyanewinstance,

theentiretrainingsetneedstoberankedforsimilaritywiththenewinstance

[Mitchell,1997].

Inthenearestneighbourclassi erkistheonlyimportantparameterthat

needstobeset.ExperimentsontheCBSdatasetsshowthatthevaluek=

1performsbest,sointheremainingofthisthesiswewillusethe1-nearest

neighbourclassi erforthetextclassi ers.

3.2.3HierarchicalClassi er

Adi cultyofthedataprovidedbytheCBS,isthelargenumberofclasses.

TheEducation1datasethasalmost6,000classes.Thisisoneofthereasons

thatclassi cationisrathertimeandspaceconsuming.Toovercomethisprob-

lemwehaveconstructedahierarchicalclassi erthatiscomputationallymore

e cient.Theclassattributecanbedividedintomultiplesubclassesthatcan

beclassi edseparately.Eachofthesesubclasseshasasmallnumberofclass

values.Assumingthattheclassvaluecanbedividedintoksubclassesandeach

subclasshasndistinctclassvalues.Thehierarchicalclassi erclassi esktimes

nclasses,whileaplainclassi erclassi esnkclasses,whichformostclassi ers

iscomputationallymoredemanding.

Mosthierarchicalclassi ersrequireastrictconcepthierarchylikeChuang

etal.[2000].However,ourdatasetcontainsmorehierarchies,ratherthanone.

Theeducationlevelisamoregeneralconceptthantheeducationsublevel,and

likewisetheeducation eldismoregeneralthantheeducationsub eld.

14

…… 此处隐藏:907字,全部文档内容请下载后查看。喜欢就下载吧 ……
Meta-classifier approach to reliable text classification(20).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:4.9 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:19元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219