Quaternionic Computing(8)
发布时间:2021-06-08
发布时间:2021-06-08
Quaternionic Computing
Proof.The rststepistoobtainasimplematrixmultiplicationruleformatrices,usingtheoperatorsReandIm.Forarbitrarycomplexnumbersαandβ,wehavethat
Re(αβ)=Re(α)Re(β) Im(α)Im(β)
Im(αβ)=Re(α)Im(β)+Im(α)Re(β)(11)
Sincetheserulesholdfortheproductsofalloftheirentries,itistheneasytoseethatthissamemultiplicationrulewillalsoholdforcomplexmatrices.Inotherwords,wecansubstituteαandβinEquation11withanytwoarbitrarycomplexmatricesAandBwhicharemultipliable,toget
Re(AB)=Re(A)Re(B) Im(A)Im(B)
Im(AB)=Re(A)Im(B)+Im(A)Re(B)
Wearenowequippedtoverifyourclaim
h(A)h(B)=(T A)(T B) Re(A)Im(B)= Im(A)Re(B) Re(A)Re(B) Im(A)Im(B)= Im(A)Re(B) Re(A)Im(B) Im(AB)
Re(AB)
=T AB=h(AB)(13)(12)
Finally,wewanttoshowthatGN SO(2N).ThisisequivalenttoshowingthatalltheimagesO=h(U)areorthonormal,i.e.thatOt=O 1.SincebyLemma1hisagrouphomomorphism,itmapsinverseelementsintoinverseelements,i.e.h(U 1)=h(U) 1.SinceUisunitary,wehavethat
O 1=h(U) 1=h(U 1)=h(U )(14)
whilethefollowinglemmawillgiveusanexpressionforOt.
Lemma2.LetAbeanarbitraryN×Ncomplexmatrix,thenh(A )=h(A)t.
Proof.Byde nitionofhandbytranspositionrulesofblockmatrices,wehave
h(A)t=(T A)t
Re(A)= Im(A)
Im(A)t
Re(A)t
=Re(A )
Im(A )
上一篇:XXX级大专儿科试题
下一篇:论马克思异化劳动理论及人的主体性