Quaternionic Computing(8)

发布时间:2021-06-08

Quaternionic Computing

Proof.The rststepistoobtainasimplematrixmultiplicationruleformatrices,usingtheoperatorsReandIm.Forarbitrarycomplexnumbersαandβ,wehavethat

Re(αβ)=Re(α)Re(β) Im(α)Im(β)

Im(αβ)=Re(α)Im(β)+Im(α)Re(β)(11)

Sincetheserulesholdfortheproductsofalloftheirentries,itistheneasytoseethatthissamemultiplicationrulewillalsoholdforcomplexmatrices.Inotherwords,wecansubstituteαandβinEquation11withanytwoarbitrarycomplexmatricesAandBwhicharemultipliable,toget

Re(AB)=Re(A)Re(B) Im(A)Im(B)

Im(AB)=Re(A)Im(B)+Im(A)Re(B)

Wearenowequippedtoverifyourclaim

h(A)h(B)=(T A)(T B) Re(A)Im(B)= Im(A)Re(B) Re(A)Re(B) Im(A)Im(B)= Im(A)Re(B) Re(A)Im(B) Im(AB)

Re(AB)

=T AB=h(AB)(13)(12)

Finally,wewanttoshowthatGN SO(2N).ThisisequivalenttoshowingthatalltheimagesO=h(U)areorthonormal,i.e.thatOt=O 1.SincebyLemma1hisagrouphomomorphism,itmapsinverseelementsintoinverseelements,i.e.h(U 1)=h(U) 1.SinceUisunitary,wehavethat

O 1=h(U) 1=h(U 1)=h(U )(14)

whilethefollowinglemmawillgiveusanexpressionforOt.

Lemma2.LetAbeanarbitraryN×Ncomplexmatrix,thenh(A )=h(A)t.

Proof.Byde nitionofhandbytranspositionrulesofblockmatrices,wehave

h(A)t=(T A)t

Re(A)= Im(A)

Im(A)t

Re(A)t

=Re(A )

Im(A )

Quaternionic Computing(8).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219