Quaternionic Computing(17)

发布时间:2021-06-08

Quaternionic Computing

Inotherwords,itsomehowkeepstrackofthephase(angle)oftherepresentationof|Φ inrebitspacewithrespecttothesesubspaces.TheCNOTgate(oranyotherrealgate)doesnotchangethisphasefactor.However,asarbitrarygateswithcomplextransitionamplitudesa ectthisphasefactor,theire ectissimulatedby“recording”thischangeinthetoprebit.Howweinitialisethetoprebitgivesanarbitraryinitialphasetotherepresentationof|Φ ,butaswesaw,thisinitialphasedoesnota ectstatisticsofthebottomwires,andthuscanbesettoanyvalue.However,howthisphasehasbeenchangedbypreviouscomplexgateswilla ectthebottomrebitsinsubsequentcomplexgates,inasimilarfashionasthephasekickbackphenomenoninmanyquantumalgorithms7.Thatiswhythattoprebitisneeded.

4QuaternionicComputing

ThissectioncloselymimicsSection3.Firstwede newhatwemeanbyquaternioniccomputing,makingsurethatitisasensiblemodel.Wethenproveanequivalencetheoremwithquantumcomputing,byusingthesametechniquesasthoseofTheorem2.

4.1

4.1.1De nitionsQuaternions

QuaternionswereinventedbytheIrishmathematicianWilliamRowanHamiltonin1843,asageneralisationofcomplexnumbers.Theyformanon-commutative,associativedivisionalgebra.Aquaternionisde nedas

α =a0+a1i+a2j+a3k(34)

wherethecoe cientsaarerealnumbersandi,j,andkobeytheequations

ii=jj=kk=ijk= 1(35)

Multiplicationofquaternionsisde nedbyformallymultiplyingtwoexpressionsfromEqua-tion34,andrecombiningthecrosstermsbyusingEquation35.Itisveryimportanttonotethatwhileallnon-zeroquaternionshavemultiplicativeinversestheyarenotcommutative8.Thus,theyformwhatiscalledadivisionalgebra,sometimesalsocalledaskew eld.Thequaternionconjugationoperationisde nedasfollows:

α =a0 a1i a2j a3k(36)

whereforclarity,werepresentwiththe(non-standard)symbol( )inordertodistinguishitfromcomplexconjugationrepresentedwith( ).Withthisconjugationrule,wecande nethemodulusofaquaternionas

|α |=√222a20+a1+a2+a3(37)

Quaternionic Computing(17).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219