Quaternionic Computing(17)
发布时间:2021-06-08
发布时间:2021-06-08
Quaternionic Computing
Inotherwords,itsomehowkeepstrackofthephase(angle)oftherepresentationof|Φ inrebitspacewithrespecttothesesubspaces.TheCNOTgate(oranyotherrealgate)doesnotchangethisphasefactor.However,asarbitrarygateswithcomplextransitionamplitudesa ectthisphasefactor,theire ectissimulatedby“recording”thischangeinthetoprebit.Howweinitialisethetoprebitgivesanarbitraryinitialphasetotherepresentationof|Φ ,butaswesaw,thisinitialphasedoesnota ectstatisticsofthebottomwires,andthuscanbesettoanyvalue.However,howthisphasehasbeenchangedbypreviouscomplexgateswilla ectthebottomrebitsinsubsequentcomplexgates,inasimilarfashionasthephasekickbackphenomenoninmanyquantumalgorithms7.Thatiswhythattoprebitisneeded.
4QuaternionicComputing
ThissectioncloselymimicsSection3.Firstwede newhatwemeanbyquaternioniccomputing,makingsurethatitisasensiblemodel.Wethenproveanequivalencetheoremwithquantumcomputing,byusingthesametechniquesasthoseofTheorem2.
4.1
4.1.1De nitionsQuaternions
QuaternionswereinventedbytheIrishmathematicianWilliamRowanHamiltonin1843,asageneralisationofcomplexnumbers.Theyformanon-commutative,associativedivisionalgebra.Aquaternionisde nedas
α =a0+a1i+a2j+a3k(34)
wherethecoe cientsaarerealnumbersandi,j,andkobeytheequations
ii=jj=kk=ijk= 1(35)
Multiplicationofquaternionsisde nedbyformallymultiplyingtwoexpressionsfromEqua-tion34,andrecombiningthecrosstermsbyusingEquation35.Itisveryimportanttonotethatwhileallnon-zeroquaternionshavemultiplicativeinversestheyarenotcommutative8.Thus,theyformwhatiscalledadivisionalgebra,sometimesalsocalledaskew eld.Thequaternionconjugationoperationisde nedasfollows:
α =a0 a1i a2j a3k(36)
whereforclarity,werepresentwiththe(non-standard)symbol( )inordertodistinguishitfromcomplexconjugationrepresentedwith( ).Withthisconjugationrule,wecande nethemodulusofaquaternionas
|α |=√222a20+a1+a2+a3(37)
上一篇:XXX级大专儿科试题
下一篇:论马克思异化劳动理论及人的主体性