Quaternionic Computing(2)

发布时间:2021-06-08

Quaternionic Computing

variationfromstandardQuantumComputingisthatinwhichwechangethedomainofthestatevectoramplitudes,andhencethedomainoftheirallowedlineartransformations.

Itwas rstshownthatrestrictingourselvestorealamplitudesdoesnotdiminishthepowerofquantumcomputing[7],andfurther,thatinfactrationalamplitudesaresu cient[1].BoththeseresultswereprovenintheQuantumTuringMachinemodel,andtherespectiveproofsarequitetechnical.Directproofsofthe rstresultforthequantumcircuitmodelstemfromthefactthatseveralsetsofgatesuniversalforquantumcomputinghavebeenfound[14,8,19,18],whichinvolveonlyrealcoe cients.

Inthispaper,weintroduceanotherpossiblevariationonquantumcomputinginvolvingquater-nionicamplitudes,andproveanequivalenceresultthatshowsthatnofurthercomputationalshouldreasonablybeexpectedinthismodel.InSection2,wewillstartbyrede ningquantumcomputinginanaxiomaticfashion,whichwillmakeitpossibletoeasilygeneralisethemodelforothernon-complexHilbertspaces.Wewillrede neandreviewtheresultsknownforcom-putingonrealHilbertspacesinSection3,alsoprovidinganewgenericandstructuralproofoftheequivalenceofthismodeltostandardcomplexquantumcomputing.WewillintroducethequaternioniccomputingmodelinSection4,discusssomeofitspeculiarities,andthenshowhowtheaboveproofcanbeeasilyadaptedtothequaternioniccase.InSection5,wediscusssomeofthisresultintermsofcomputationalcomplexityandalsooftheparticularitiesofthequaternionicmodeloninitspossible“physical”interpretations.Finally,wesummariseourconclusionsandproposefurtheropenquestionsinSection6.

2QuantumComputingRevisited

ThebasictenetsofQuantumComputing,areasfollows:

States.Thepurestatesdescribingtheinternalcon gurationofannqubitcomputingdevice

arede nedas1-dimensionalraysina2n-dimensionalvectorspaceoverthecomplexnumbers.Oversuchavectorspace,theusualinner-productde nesthestandardL2-norm,whichinturnde nesaproperHilbertspace1.Withrespecttothisnorm,statesarenormallyrepresentedasunitvectors,uptoanarbitraryphasefactoreiθ,with0≤θ<2π.Measurement.Thecanonicalbasisofthisvectorspaceisgivenspecialmeaning,andcalled

thecomputationalbasis,inthatitrepresentsstateswhichalwaysgivethesameoutcomewhen“queried”abouttheirinformationcontent.Thestatesareusuallylabelledbyn-bitstringsb=b1...bn.Foragenericpurestate|Φ ,theprobabilitiesofmeasurementoutcomesaregivenbythefollowingrule

Pr(|Φ →“b”)=| Φ|b |2

where|b issomecomputationalbasisvector.(1)

Quaternionic Computing(2).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219